

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-13/0265 vom 9. August 2017

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Sympafix Injektionssystem C100-PLUS oder C100-PLUS Nordic für Mauerwerk

Injektionssystem zur Verankerung im Mauerwerk

Sympafix BV Fluorietweg 25E 1812RR ALKMAAR NIEDERLANDE

SYMPAFIX, Plant 2 Germany

61 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

ETAG 029, April 2013, verwendet als EAD gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011

ETA-13/0265 vom 9. April 2013

Z46319.17

Europäische Technische Bewertung ETA-13/0265

Seite 2 von 61 | 9. August 2017

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-13/0265

Seite 3 von 61 | 9. August 2017

Besonderer Teil

1 Technische Beschreibung des Produkts

Das Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic ist ein Verbunddübel (Injektionstyp), der aus einer Mörtelkartusche mit Injektionsmörtel C100-Plus oder C100-Plus Nordic, einer Siebhülse und einer Gewindestange mit Sechskantmutter und Unterlegscheibe besteht. Die Stahlteile bestehen aus verzinktem Stahl oder aus nichtrostendem Stahl.

Die Ankerstange wird in ein mit Injektionsmörtel gefülltes Bohrloch gesetzt und durch den Verbund und/oder Formschluss zwischen Stahlteil, Injektionsmörtel und Mauerwerk verankert. Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe zur Nutzungsdauer kann nicht als Garantie des Herstellers ausgelegt werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Tragfähigkeit der Stahlelemente	Siehe Anhang C2
Charakteristische Tragfähigkeit der Dübel im Mauerwerk	Siehe Anhänge C3 – C45
Verformungen unter Querlast und Zuglast	Siehe Anhänge C4 – C45
Reduktionsfaktor für Baustellenversuche (β-Faktor)	Siehe Anhang C1
Rand- und Achsabstände	Siehe Anhänge C3 – C45
Gruppenfaktor für Gruppenbefestigungen	Siehe Anhänge C3 – C45

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung		
Brandverhalten	Klasse A1		
Feuerwiderstand	Leistung nicht bewertet		

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Bezüglich gefährlicher Stoffe können die Produkte im Geltungsbereich dieser Europäischen Technischen Bewertung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Verordnung (EU) Nr. 305/2011 zu erfüllen, müssen gegebenenfalls diese Anforderungen ebenfalls eingehalten werden.

Europäische Technische Bewertung ETA-13/0265

Seite 4 von 61 | 9. August 2017

3.4 Sicherheit bei der Nutzung (BWR 4)

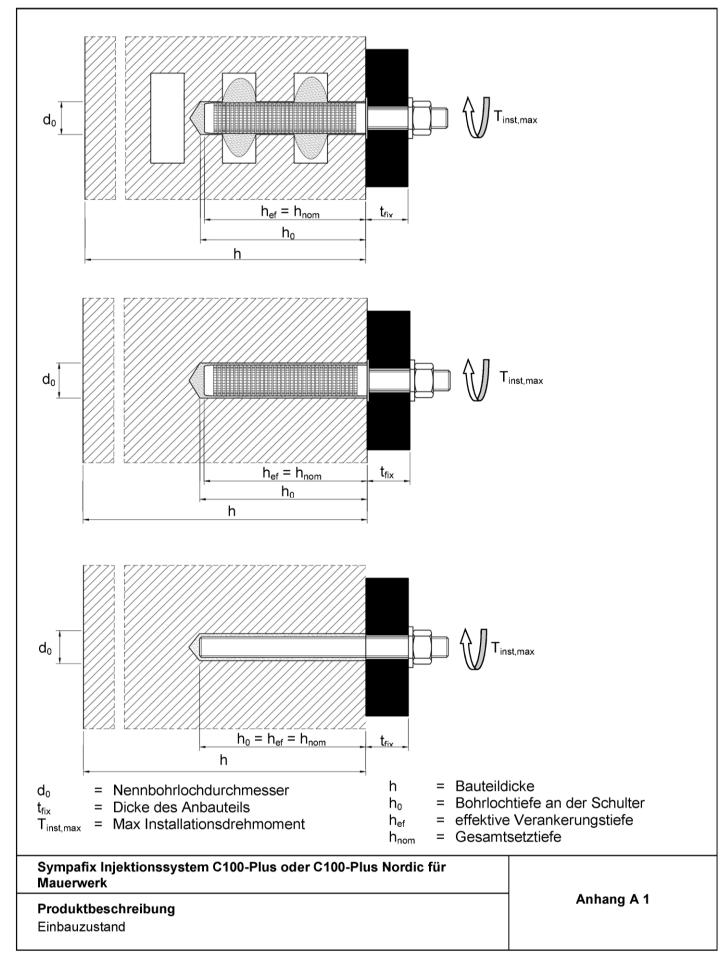
Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß der Leitlinie für die europäische technische Zulassung ETAG 029, April 2013 verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011 gilt folgende Rechtsgrundlage: [97/177/EG].

Folgendes System ist anzuwenden: 1

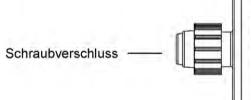
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 9. August 2017 vom Deutschen Institut für Bautechnik

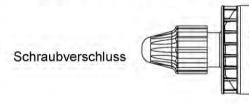
BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

Beglaubigt:



Kartusche: C100-PLUS oder C100-PLUS Nordic

150 ml, 280 ml, 300 ml bis zu 333 ml und 380 ml bis zu 420 ml Kartusche (Typ: koaxial)



Aufdruck: C100-PLUS oder C100-PLUS Nordic, Verarbeitungshinweise, Chargennummer, Haltbarkeit, Gefahrennummern, Aushärtezeit und der Verarbeitungszeit (abhängig von der Temperatur), Optional mit Kolbenwegskala

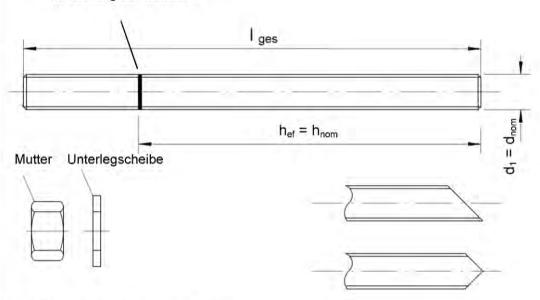
235 ml, 345 ml bis zu 360 ml und 825 ml Kartusche (Typ: "side-by-side")

165 ml und 300 ml Kartusche (Typ: "Schlauchfolie")

Aufdruck: C100-PLUS oder C100-PLUS Nordic, Verarbeitungshinweise, Chargennummer, Haltbarkeit, Gefahrennummern, Aushärtezeit und der Verarbeitungszeit (abhängig von der Temperatur), Optional mit Kolbenwegskala

Statikmischer

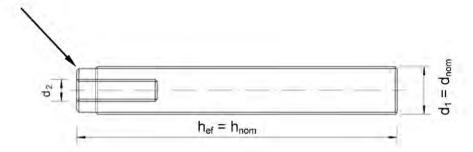
Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für
Mauerwerk


Produktbeschreibung
Injektionssystem

Anhang A 2

Gewindestange M8, M10, M12, M16

Markierung der Setztiefe

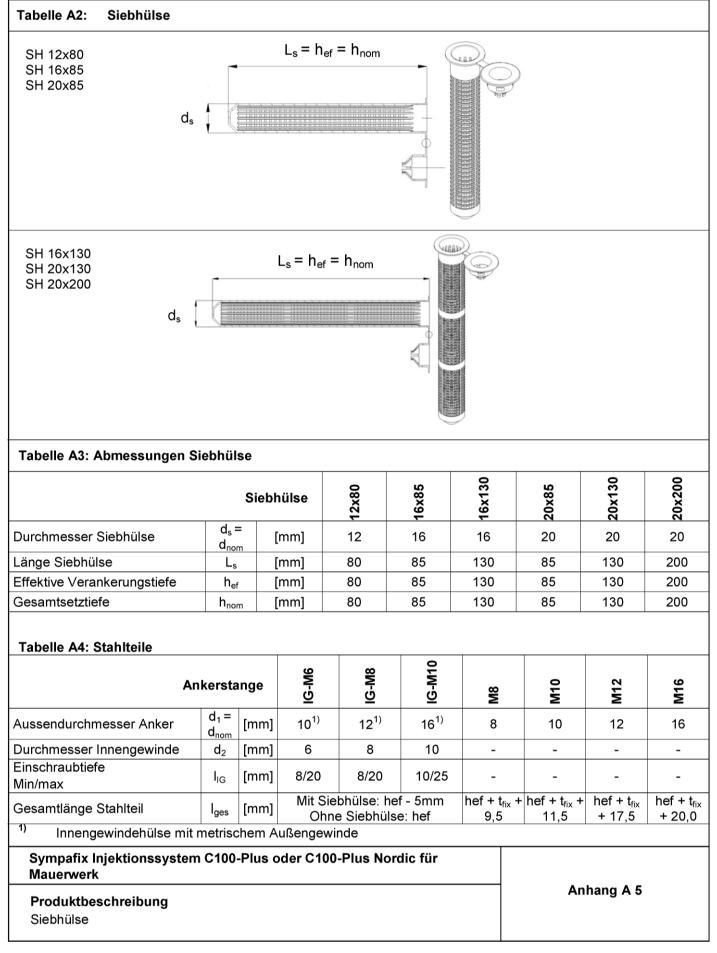


Handelsübliche Gewindestange mit:

- Werkstoff, Abmessungen und mechanische Eigenschaften gem. Tabelle A1
- Abnahmeprüfzeugnis 3.1 gem. EN 10204:2004. Das Dokument muss aufbewahrt werden.
- Markierung der Verankerungstiefe

Innengewindehülse IG-M6, IG-M8, IG-M10

Herstellerprägung



Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	100-100
Produktbeschreibung	Anhang A 3
Ankerstangen	

Bezeichnung	Material					
Stahlteile, galvanisch verzinkt ≥ 5 µm gem. EN gem. EN ISO 1461:2009 und EN ISO 10684:200		zinkt ≥ 40 μm				
Ankerstange	Stahl, EN 10087:1998 oder E Festigkeitsklasse 4.6, 4.8, 5.6 EN 1993-1-8:2005+AC:2009					
Sechskantmutter, EN ISO 4032:2012	Stahl, EN 10087:1998 oder E Festigkeitsklasse 4 (für Ankei Festigkeitsklasse 5 (für Ankei Festigkeitsklasse 8 (für Ankei gem. EN ISO 898-2:2012	rstange der Klasse 4.6, 4.8) rstange der Klasse 5.6, 5.8)				
Scheibe, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000, oder EN ISO 7094:2000						
Innengewindehülse	Stahl, verzinkt, Festigkeitsklasse 5.6, 5.8 und	l 8.8 gem. EN ISO 898-1:2013				
Stahlteile aus nichtrostendem Stahl						
Ankerstange	Material 1.4401 / 1.4404 / 1.4 Festigkeitsklasse 70 gem. EN Festigkeitsklasse 80 gem. EN	I ISO 3506-1:2009 I ISO 3506-1:2009				
Sechskantmutter, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10088-1:2014, Festigkeitsklasse 70 (für Ankerstange der Klasse 70) Festigkeitsklasse 80 (für Ankerstange der Klasse 80) gem. EN ISO 3506-2:2009					
Scheibe, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000, oder EN ISO 7094:2000	Material 1.4401 / 1.4404 / 1.4571 EN 10088-1:2014, EN 10088-1:2014					
Innengewindehülse	Material 1.4401 / 1.4404 / 1.4571 EN 10088-1:2014, Festigkeitsklasse 70 (für Ankerstange der Klasse 70) gem. EN ISO 3506-1:2009					
Stahlteile aus hochkorrosionsbeständigem Sta	ahl (HCR)					
Ankerstange	Material 1.4529 / 1.4565, EN Festigkeitsklasse 70 gem. EN Festigkeitsklasse 80 gem. EN	I ISO 3506-1:2009 I ISO 3506-1:2009				
Sechskantmutter, EN ISO 4032:2012	Material 1.4529 / 1.4565, EN 10088-1:2014, Festigkeitsklasse 70 (für Ankerstange der Klasse 70) Festigkeitsklasse 80 (für Ankerstange der Klasse 80) gem. EN ISO 3506-2:2009					
Scheibe, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000, oder EN ISO 7094:2000	Material 1.4529 / 1.4565, EN	10088-1:2014				
Innengewindehülse	Material 1.4529 / 1.4565, EN Festigkeitsklasse 70 (für Ank EN ISO 3506-1:2009	10088-1:2014 erstange der Klasse 70) gem.				
Plastiksiebhülse						
Siebhülse	Material Polypropylene					
Sympafix Injektionssystem C100-Plus oder C Mauerwerk	100-Plus Nordic für					
Produktbeschreibung Werkstoffe	Anhang A 4					

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

Statische und quasi-statische Lasten

Verankerungsgrund:

- Porenbeton (Nutzungskategorie d) entsprechend Anhang B2
- Vollsteinen (Nutzungskategorie b) entsprechend Anhang B2.
- Loch- und Hohlsteinen ((Nutzungskategorie c) entsprechend Anhang B2 und B3
- Mindestanforderung des Mauermörtels: Festigkeitsklasse M2,5 gemäß EN 998-2:2010.
- Bei anderen Steinen im Vollsteinmauerwerk, Lochsteinmauerwerk oder Porenbeton darf die charakteristische Tragfähigkeit des Dübels durch Test auf der Baustelle entsprechend ETAG 029, Anhang B. Tabelle C unter Berücksichtigung des ß-Faktors von Anhang C1. Tabelle C1 ermittelt werden.

Bemerkung: Der charakteristische Widerstand für Vollsteine und Porenbeton gilt auch für größere Steinabmessungen und höhere Steindruckfestigkeiten.

Temperaturbereich:

- Ta: 40°C bis +40°C (max. Kurzzeittemperatur +40°C und max. Langzeittemperatur +24°C)
- T_b: 40°C bis +80°C (max. Kurzzeittemperatur +80°C und max. Langzeittemperatur +50°C)
- T_c: 40°C bis +120°C (max. Kurzzeittemperatur +120°C und max. Langzeittemperatur +72°C)

Anwendungsbedingungen (Umgebungsbedingungen):

- Trockenes und nasses Mauerwerk (in Bezug auf den Injektionsmörtel).
- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien, einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl).

Anmerkung: Agressive Bedingunen sind z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Nutzungskategorie:

- Kategorie d/d - Installation und Verwendung in trockenem Mauerwerk.
- Kategorie w/w Installation und Verwendung in nassem Mauerwerk (inkl. w/d Installation im nassem Mauerwerk und Verwendung im trockenem Mauerwerk)

Bemessung:

- Unter Berücksichtigung des Mauerwerks im Verankerungsbereich, der zu verankernden Lasten und der Weiterleitung der Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben.
- Die Bemessung der Verankerungen erfolgt, gemäß ETAG 029, Annex C. Design Methode A. unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- N_{Rk,p} = N_{Rk,b} siehe Anhang C4 bis C45; N_{Rk,s} siehe Anhang C2; N_{Rk,pb} siehe ETAG 029, Anhang C
- V_{Rk,b} und V_{Rk,c} siehe Anhang C4 bis C45; V_{Rk,s} siehe Anhang C2; V_{Rk,pb} siehe ETAG 029, Anhang C
- Bei Anwendungen mit Siebhülse mit Bohrlochdurchmessern ≤15mm, installiert in nichtgefüllte Fugen:
 - $(N_{Rk,p} = N_{Rk,b} \text{ siehe Anhang C4 bis C45})$
- (V_{Rk,b} und V_{Rk,c} siehe Anhang C4 bis C45)

Einbau:

- Trockenes oder nasses Mauerwerk.
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Schrauben oder Gewindestangen (inkl. Mutter und Unterlegscheibe) müssen dem Material und der Festigkeitsklasse der Innengewindehülse entsprechen.

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Verwendungszweck Spezifikationen	Anhang B 1

Stein-Nr.	Steinart	Foto	Ab- messungen Länge Breite Höhe	Druck- festigkeit	Rohdichte	Siebhülse - Ankertyp	Anhang	
			[mm]	nm] [N/mm²] [kg/dm³]				
ore	nbetonsteine gem	äß EN 771-4						
1	Porenbeton AAC6	J	499 240 249	6	0,6	M8/M10/M12/M16/IG-M6/IG-M8/IG-M10	C4 - C5	
alk	sandsteine gemäß	EN 771-2						
2	Kalksand- vollstein KS-NF	-	240 115 71	10 20 27	2,0	M8/M10/M12/M16/IG-M6/IG-M8/IG-M10 SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10 SH 20x200 – M12/M16/IG-M8/IG-M10	C6 - C8	
3	Kalksand- lochstein KSL-3DF		240 175 113	8 12 14	1,4	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10 SH 20x200 – M12/M16/IG-M8/IG-M10	C9 - C11	
4	Kalksand- lochstein KSL-12DF	"tree	498 175 238	10 12 16	1,4	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10	C12 C14	
iege	elsteine gemäß EN	771-1				Service Destruction		
5	Vollziegel Mz – DF		240 115 55	10 20 28	1,6	M8/M10/M12/M16/IG-M6/IG-M8/IG-M10 SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10 SH 20x200 – M12/M16/IG-M8/IG-M10	C15 C17	
6	Hochloch -ziegel Hlz-16DF		497 240 238	6 8 12 14	0,8	SH 12x80 - M8 SH 16x85 - M8/M10/IG-M6 SH 16x130 - M8/M10/IG-M6 SH 20x85 - M12/M16/IG-M8/IG-M10 SH 20x130 - M12/M16/IG-M8/IG-M10 SH 20x200 - M12/M16/IG-M8/IG-M10		
7	Lochziegel Porotherm Homebric		500 200 299	4 6 10	0,7	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10		
	ympafix Injektio lauerwerk	nssystem C100-	Plus oder C1	00-Plus	Nordic f	ür Anhang B 2		

Stein-Nr.	Steinart	Foto	Ab- messungen Länge Breite Höhe	Druck- festigkeit	Rohdichte	Siebhülse - Ankertyp	Anhang
			[mm]	[N/mm ²]	[kg/dm ³]		
Zieg	elsteine gemäß	EN 771-1			_	DU 40:00 MO	
8	Lochziegel BGV Thermo		500 200 314	4 6 10	0,6	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10	C24 C26
9	Lochziegel Calibric R+		500 200 314	6 9 12	0,6	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10	C27- C29
10	Lochziegel Urbanbric		560 200 274	6 9 12	0,7	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10	C30 C32
11	Lochziegel Brique creuse C40		500 200 200	4 8 12	0,7	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10	C33 C35
12	Lochziegel Blocchi Leggeri		250 120 250	4 6 8 12	0,6	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10 SH 20x200 – M12/M16/IG-M8/IG-M10	C36 C38
13	Lochziegel Doppio Uni	11.54	250 120 120	10 16 20 28	0,9	SH 12x80 - M8 SH 16x85 - M8/M10/IG-M6 SH 16x130 - M8/M10/IG-M6 SH 20x85 - M12/M16/IG-M8/IG-M10 SH 20x130 - M12/M16/IG-M8/IG-M10 SH 20x200 - M12/M16/IG-M8/IG-M10	C39 C41
Leic	htbetonsteine g	jemäß EN 771-3					
14	Lochstein aus Leichtbeton Bloc creux B40		494 200 190	4	0,8	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10	C42 - C43
15	Vollstein aus		300 123	2	0,6	M8/M10/M12/M16/IG-M6/IG-M8/IG-M10 SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6	C44 -

14	Leichtbeton Bloc creux B40	200 190	4	0,8	SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10	C42 - C43
15	Vollstein aus Leichtbeton	300 123 248	2	0,6	M8/M10/M12/M16/IG-M6/IG-M8/IG-M10 SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10 SH 20x200 – M12/M16/IG-M8/IG-M10	C44 - C45

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk

Verwendungszweck

Steintyp und Eigenschaften mit den entsprechenden Befestigungselementen

Anhang B 3

Installation: Stahlbürste

Tabelle B2: Montagekennwerte für Porenbeton und Vollstein (ohne Siebhülse)

Ankergröße		M8	M10	IG-M6	M12	IG-M8	M16	IG-M10	
Bohrernenndurchmesser	do	[mm]	10	1	2	14		18	
Bohrlochtiefe	ho	[mm]	80	9	0	100		100 100	
Effektive Verankerungstiefe	h _{ef}	[mm]	80	90 10			00	0 100	
Minimale Wanddicke	h _{min}	[mm]	h _{ef} + 30						
Durchgangsloch im anzuschließenden Bauteil			7	14	9	18	12		
Bürstendurchmesser	d _b	[mm]	12	14 16 2		20			
Min. Bürstendurchmesser	$d_{b,min}$	[mm]	10,5	12,5		14,5		18,5	
Max. Installationsdrehmoment	T _{inst,max}	[Nm]			2 (1	4 für Mz	DF)		

Tabelle B3: Montagekennwerte im Vollstein und Lochstein (mit Siebhülse)

Ankergröße	M8	M8 / M1	0 / IG-M6	M12 / M16 / IG-M8 / IG-M10					
	;	Siebhülse	12x80	16x85	16x130	20x85	20×130	20×200	
Bohrernenndurchmesser	do	[mm]	12	16	16	20	20	20	
Bohrlochtiefe	h _o	[mm]	85	90	135	90	135	205	
Effektive Verankerungstiefe	h _{ef}	[mm]	80	85	130	85	130	200	
Minimale Wanddicke	h _{min}	[mm]	115	115	175	115	175	240	
Durchgangsloch im anzuschließenden Bauteil d _f ≤ [mm			9	7 (IG-M6) / 9 (M8) / 12 (M10)		9 (IG-M8) / 12 (IG-M10) / 14 (M12) / 18 (M16)			
Bürstendurchmesser	d _b	[mm]	14	18		22			
Min. Bürstendurchmesser	d _{b,min}	[mm]	12,5	2,5 16,5		20,5			
Max. Installationsdrehmoment					2				

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Verwendungszweck Montagekennwerte und Reinigungsbürste	Anhang B 4

Tabelle B4: Maximale Verarbeitungszeiten und minimale Aushärtezeiten C100-PLUS

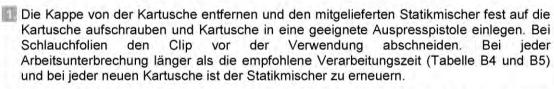
Temperatur im Verankerungsgrund T			Kartuschentemperatur	Gellierungs- / Verarbeitungszeit	Min. Aushärtezeit in trockenem Untergrund ¹⁾
- 10°C	bis	- 6°C	+15°C bis +40°C	90 min	24 h
- 5°C	bis	- 1°C		90 min	14 h
0°C	bis	+ 4 °C		45 min	7 h
+ 5 °C	bis	+ 9 °C		25 min	2 h
+ 10 °C	bis	+ 19 °C	+5°C bis +40°C	15 min	80 min
+ 20 °C	bis	+ 29 °C	+5 C bis +40 C	6 min	45 min
+ 30 °C	bis	+ 34 °C		4 min	25 min
+ 35 °C	bis	+ 39 °C		2 min	20 min
+ 40°C				1,5 min	15 min

In feuchtem Untergrund <u>muss</u> die Aushärtezeit verdoppelt werden

Tabelle B5: Maximale Verarbeitungszeiten und minimale Aushärtezeiten C100-PLUS Nordic

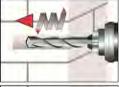
Temperatur im Verankerungsgrund T	Kartuschentemperatur	Gellierungs- / Verarbeitungszeit	Min. Aushärtezeit in trockenem Untergrund ¹⁾
- 20 °C bis - 16 °C		75 min	24 h
- 15 °C bis - 11 °C		55 min	16 h
- 10 °C bis - 6 °C		35 min	10 h
- 5 °C bis - 1 °C	-20°C bis +10°C	20 min	5 h
0 °C bis + 4 °C		10 min	2,5 h
+ 5 °C bis + 9 °C	5 °C bis +9 °C	6 min	80 min
+ 10°C		6 min	60 min

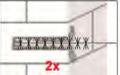
¹⁾ In feuchtem Untergrund <u>muss</u> die Aushärtezeit verdoppelt werden


Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Verwendungszweck Verarbeitungs- und Aushärtezeit	Anhang B 5

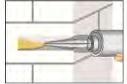
Montageanweisung

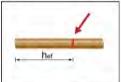
Vorbereitung der Kartusche

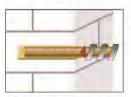



Der Mörtelvorlauf ist nicht zur Befestigung der Ankerstange geeignet. Vor dem Injizieren ins Bohrloch, unvermischten Mörtel solange verwerfen, bis sich eine gleichmäßige graue Mischfarbe eingestellt hat, jedoch mindesten 3 volle Hübe, bei Schlauchfolien 6 volle Hübe

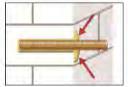
Installation in Vollstein (ohne Siebhülse)


Das Bohrloch, senkrecht zur Oberfläche des Verankerungsgrundes, unter Verwendung eines Hartmetallbohres mit Bohrverfahren nach Anhang C4-C45, mit vorgeschriebenem Bohrernenndurchmesser und Bohrlochtiefe entsprechend der Ankergröße und Einbindetiefe des gewählten Dübels, im Verankerungsgrund erstellen. Bei Fehlbohrungen ist das Bohrloch zu vermörteln.





4 Bohrloch vom Bohrlochgrund her zweimal ausblasen. Die Stahlbürste mit passender Größe (> d_{b,min} Tabelle B2 oder B3) an einer Bohrmaschine oder einen Akkuschrauber einstecken, das Bohrloch zweimal bürsten und abschließend erneut zweimal ausblasen.



Das Bohrloch vom Grund her zu mindestens 2/3 mit Mörtel füllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Die temperaturrelevanten Verarbeitungszeiten (Tabelle B4 und B5) sind zu beachten.

Or dem Einsetzen der Ankerstange ist die Verankerungstiefe auf der Ankerstange zu markieren. Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe eindrücken. Die Ankerstange muss schmutz-, fett-, und ölfrei sein.

- Nach der Installation des Ankers sollte der Ringspalt komplett mit Mörtel ausgefüllt sein. Tritt keine Masse nach Erreichen der Verankerungstiefe heraus, ist diese Voraussetzung nicht erfüllt und die Anwendung muss vor Beendigung der Verarbeitungszeit wiederholt werden.
- Die angegebene Aushärtezeit muss eingehalten werden. Anker während der Aushärtezeit nicht bewegen oder belasten (Tabelle B4 und B5).

Nach vollständiger Aushärtung kann das Anbauteil mit bis zu dem maximalen Installationsdrehmoment (siehe Anhang B4) montiert werden. Die Mutter muss mit einem kalibrierten Drehmomentschlüssel angezogen werden.

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk

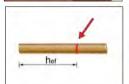
Verwendungszweck

Montageanweisung Vollstein und Porenbeton

Anhang B 6

Montageanleitung für Voll- und Lochstein (mit Siebhülse)

Das Bohrloch, senkrecht zur Oberfläche des Verankerungsgrundes, mit Bohrverfahren nach Anhang C4-C45, mit vorgeschriebenem Bohrernenndurchmesser und Bohrlochtiefe entsprechend der Ankergröße und Einbindetiefe des gewählten Dübels, im Verankerungsgrund erstellen.


Bohrloch vom Bohrlochgrund her zweimal ausblasen. Die Stahlbürste mit passender Größe (> d_{b,min} Tabelle B3) an einer Bohrmaschine oder einen Akkuschrauber einstecken, das Bohrloch zweimal bürsten und abschließend erneut zweimal ausblasen.

5. Die Siebhülse bündig mit der Oberfläche des Verankerungsgrundes in das Bohrloch einstecken. Sicherstellen, dass die Siebhülse optimal ins Bohrloch passt. Siebhülse niemals kürzen.

6. Die Siebhülse vom Grund her mit Mörtel füllen. Die exakte Mörtelmenge ist dem Kartuschenetikett oder der Montageanleitung zu entnehmen. Die temperaturrelevanten Verarbeitungszeiten (Tabelle B4 und B5) sind zu beachten

Vor dem Einsetzen der Ankerstange ist die Verankerungstiefe auf der Ankerstange zu markieren. Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe eindrücken. Die Ankerstange muss schmutz-, fett-, und ölfrei sein.

Die angegebene Aushärtezeit muss eingehalten werden. Anker während der Aushärtezeit nicht bewegen oder belasten (Tabelle B4 und B5).

Nach vollständiger Aushärtung kann das Anbauteil mit bis zu dem maximalen Installationsdrehmoment (siehe Anhang B4) montiert werden. Die Mutter muss mit einem kalibrierten Drehmomentschlüssel angezogen werden.

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk

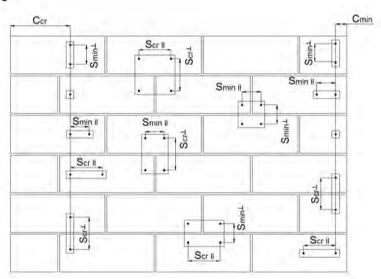
Verwendungszweck

Montageanleitung für Voll- und Lochstein

Anhang B 7

		β-Faktor							
Stein-Nr.	Ankergröße	T _a : 40°C / 24°C		T _b : 80°C / 50°C		T _c : 120°C / 72°C			
		d/d	w/d w/w	d/d	w/d w/w	d/d	w/d w/w		
1 AAC6	alle Größen	0,95	0,86	0,81	0,73	0,81	0,73		
2	d ₀ ≤ 14 mm	0,93	0,80	0,87	0,74	0,65	0,56		
KS-NF	d ₀ ≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,6		
3	d₀ ≤ 12 mm	0,93	0,80	0,87	0,74	0,65	0,56		
KSL-3DF	d₀ ≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,6		
4	d₀ ≤ 12 mm	0,93	0,80	0,87	0,74	0,65	0,5		
KSL-12DF	d₀ ≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,6		
5 MZ-DF 6 Hlz-16DF									
7 Porotherm Homebric									
8 BGV-Thermo									
9 Calibric R+	alle Größen	0,86	0,86	0,86	0,86	0,73	0,7		
10 Urbanbric									
11 Brique creuse C40									
12 Blocchi Leggeri									
13 Doppio Uni									
14	d₀ ≤ 12 mm	0,93	0,80	0,87	0,74	0,65	0,5		
Bloc creux B40	d ₀ ≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,6		
15	d₀ ≤ 12 mm	0,93	0,80	0,87	0,74	0,65	0,56		
olid light weight concrete	d ₀ ≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,6		

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen	Anhang C 1
β-Factoren für Baustellenversuche unter Zugbelastung	



Ankergröße			IG-M6	IG-M8	IG-M10	M8	M10	M12	M16
Charakteristische Zugtragfähigkeit									
Stahl – Festigkeitsklasse 4.6	$N_{Rk,s}$	[kN]	-	-	-	15	23	34	63
	γMs	[-]		-			2.		
Stahl – Festigkeitsklasse 4.8	$N_{Rk,s}$	[kN]	-	-	-	15	23	34	63
	γMs	[-]		-			1,		
Stahl – Festigkeitsklasse 5.6	$N_{Rk,s}$	[kN]	10	18	29	18	29	42	79
	ΥMs	[-]		2,0		1.5	2,		
Stahl – Festigkeitsklasse 5.8	$N_{Rk,s}$	[kN]	10	17	29	18	29	42	79
	ΥMs	[-]	4.0	1,5	4.0		1,		
Stahl – Festigkeitsklasse 8.8	$N_{Rk,s}$	[kN]	16	27	46	29	46	67	126
	γMs	[-]		1,5			1,		
Nichtrostender Stahl A4 / HCR,	$N_{Rk,s}$	[kN]	14	26	41	26	41	59	110
Festigkeitsklasse 70	ΥMs	[-]	1.0	1,87	10		1,8		
Nichtrostender Stahl A4 / HCR,	$N_{Rk,s}$	[kN]	16	29	46	29	46	67	126
Festigkeitsklasse 80	γMs	[-]		1,6			1,	,6	
Charakteristische Querzugtragfähigke		[kN]	_	_	_	7	12	17	31
Stahl – Festigkeitsklasse 4.6	$V_{Rk,s}$	[-]	-	_	-	,	1,0		31
	γ _{Ms}	[kN]	_		_	7	12	17	31
Stahl – Festigkeitsklasse 4.8	V _{Rk,s}	[-]			_	,			- 31
	γ _{Ms}	<u>[-]</u> [kN]	5	9	15	9	15	21	39
Stahl – Festigkeitsklasse 5.6	$V_{Rk,s}$	[-]	3	1,67	13	9	1,0		
	γ _{Ms}	<u>l-J</u> [kN]	5	9	15	9	15	21	39
Stahl – Festigkeitsklasse 5.8	$V_{Rk,s}$	[-]	3	1,25	13	9		 25	39
	γMs	<u>l-j</u> [kN]	8	1,25	23	15	23	34	63
Stahl – Festigkeitsklasse 8.8	$V_{Rk,s}$	[-]	0	1,25	23	15			03
Nichtrootonder Stehl A4 / LICE	γMs	<u>l-j</u> [kN]	7	1,25	20	13	20	30	55
Nichtrostender Stahl A4 / HCR, Festigkeitsklasse 70	$V_{Rk,s}$	[-]	/		20	13		56	- 55
	ΥMs		8	1,56 15	23	15	23	34	63
Nichtrostender Stahl A4 / HCR, Festigkeitsklasse 80	$V_{Rk,s}$	[kN]	0		23	15			- 63
Charakteristisches Biegemoment	γ̃Ms	[-]		1,33			1,	33	
	$M_{Rk,s}$	[Nm]	_	_	_	15	30	52	133
Stahl – Festigkeitsklasse 4.6		[-]		_		10	1,0		100
	γ _{Ms} M _{Rk,s}	[Nm]	_	_	_	15	30	52	133
Stahl – Festigkeitsklasse 4.8		[-]		_		10		25	100
	γ _{Ms} M _{Rk,s}	[Nm]	8	19	37	19	37	66	167
Stahl – Festigkeitsklasse 5.6	γ _{Ms}	[-]		1,67	- 07	10		67	107
	M _{Rk,s}	[Nm]	8	19	37	19	37	66	167
Stahl – Festigkeitsklasse 5.8		[-]		1,25		10		25	107
	γ _{Ms} M _{Rk,s}	[Nm]	12	30	60	30	60	105	266
Stahl – Festigkeitsklasse 8.8	•	[-]	12	1,25		50		25	200
Nichtrostender Stahl A4 / HCR,	γ _{Ms} M _{Rk,s}	[Nm]	11	26	52	26	52	92	233
Festigkeitsklasse 70		[-]	11	1,56	52	20	1,		200
Nichtrostender Stahl A4 / HCR,	γ _{Ms}	[Nm]	12	30	60	30	60	105	266
Festigkeitsklasse 80	$M_{Rk,s}$ γ_{Ms}	[-]	12	1,33	00	30		33	200

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Charakteristische Stahltragfähigkeit unter Zuglast und Querzuglast	Anhang C 2

Rand- und Achsabstände

Charakteristischer Randabstand Ccr

Cmin = Minimaler Randabstand

Charakteristischer Achsabstand Scr Ξ

= Minimaler Achsabstand Smin

= Charakteristischer (minimaler) Achsabstand für Anker parallel zur Lagerfuge angeordnet Scr.II; (Smin,II) Charakteristischer (minimaler) Achsabstand für Anker senkrecht zur Lagerfuge angeordnet Scr, +; (Smin, +)

Lastrichtung Ankeran- ordnung	Zuglast	Querzuglast parallel zum freien Rand	Querzuglast senkrecht zum freien Rand
Ankeranordnung parallel zur Lagerfuge s _{cr.ll} (s _{min,ll})		V	V
Ankeranordnung senkrecht zur Lagerfuge s _{cr,±} (s _{min,±})		V	V - •

Gruppenfaktor bei Zugbelastung für Anker parallel zur Lagerfuge angeordnet $\alpha_{a,N,II} =$ Gruppenfaktor bei Querzugbelastung für Anker parallel zur Lagerfuge angeordnet $\alpha_{g,V,II} =$ $\alpha_{g,N,\perp} =$ Gruppenfaktor bei Zugbelastung für Anker senkrecht zur Lagerfuge angeordnet $\alpha_{q,V,\perp} =$ Gruppenfaktor bei Querzugbelastung für Anker senkrecht zur Lagerfuge angeordnet

 $N_{Rk}^g = \alpha_{g,N} * N_{RK}$ Gruppe aus 2 Anker: und

 $V_{Rk}^g = \alpha_{g,V} * V_{Rk}$ $V_{Rk}^g = \alpha_{g,V,II} * \alpha_{g,V,\perp} * V_{Rk}$ $N_{Rk}^g = \alpha_{g,N,II} \alpha_{g,N,\perp} N_{RK}$ und Gruppe aus 4 Anker:

(N_{Rk:} N_{Rk,b} oder N_{Rk,b,j} für c_{cr})

(V_{Rk:} V_{Rk,c;} V_{Rk,c,j}; V_{Rk,b} oder V_{Rk,b,j} für c_{cr})

(mit zugehörigem α_a)

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	Witter Ve
Leistungen	Anhang C 3
Rand- und Achsabstände	

Steintyp: Porenbeton - AAC6

Tabelle C3: Beschreibung des Steins

Porenbeton AAC6	
0,6	
6	
EN 771-4	
z.B. Porit (DE)	
499 x 240 x 249	
Drehend	
	0,6 6 EN 771-4 z.B. Porit (DE) 499 x 240 x 249

Tabelle C4: Installationsparameter

Ankergröße Effektive Verankerungstiefe		[-]	M8	M10/IG-M6	M12/IG-M8	M16/IG-M10	
		[mm]	80	90	100	100	
Randabstand	Ccr	[mm]	1,5*h _{ef}				
Application Broad street	C _{min,N}	[mm]	75				
Minimaler Randabstand	Cmin, V, II (Cmin, V, 1)	[mm]			'5 (1,5*h _{ef})		
Achsabstand	Scr	[mm]	3*h _{ef}				
Minimaler Achsabstand	Smin	[mm]	100				

c_{min,V,II} für Querzugbelastung parallel zum freien Rand; c_{min,V,⊥} für Querzugbelastung senkrecht zum freien Rand

Tabelle C5: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung	mit c ≥	mit s ≥			
II: Ankeranordnung	125 (M8:120)	100	100		1,8
parallel zur Lagerfuge	1,5*hef	3*hef	α _{g,N,II}	5.	2,0
1: Ankeranordnung	75	100		Н	1,4
senkrecht zur Lagerfuge	1,5*hef	3*hef	$\alpha_{g,N,\perp}$		2,0

Tabelle C6: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

Anordnur	g	mit c ≥	mit s ≥			
II: Ankeranordnung		75	100		h = -1	1,2
parallel zur Lagerfuge	V	1,5*hef	3*hef	$\alpha_{g,V,II}$	7.1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	1,5*hef	3*hef	$\alpha_{g,\vee,\perp}$	1-1	2,0

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	N W
Leistungen Porenbeton - AAC6	Anhang C 4
Beschreibung des Steins	
Installationsparameter	

Steintyp: Porenbeton - AAC6

Tabelle C7: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V	1,5*hef	3,0*hef	$\alpha_{g,V,II}$		2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V—••	1,5*hef	3,0*hef	$\alpha_{g,V,\perp}$	ы	2,0

Tabelle C8: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

				Charakt	eristischer V	/iderstand				
		Nutzungskategorie								
	Effektive Verankerungs-	d/d				d/d w/d w/w				
Ankergröße		40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche		
	h _{ef}		$N_{Rk,b} = N_{Rk,p}$	1)		$N_{Rk,b} = N_{Rk,p}^{1}$)	V _{Rk,b} ²⁾³⁾		
	[mm]				[kN]					
			Druckfe	stigkeit f _b ≥	N/mm ²					
M8	80	2,5 (2,0)	2,5 (1,5)	2,0 (1,2)	2,5 (1,5)	2,0 (1,5)	1,5 (1,2)	6,0		
M10/IG-M6	90	4,0 (2,5)	3,0 (2,0)	2,5 (1,5)	3,5 (2,5)	3,0 (2,0)	2,5 (1,5)	10,0		
M12/IG-M8	100	5,0 (3,5)	4,0 (3,0)	3,0 (2,5)	4,5 (3,0)	3,5 (2,5)	3,0 (2,5)	10,0		
M16/IG-M10	100	6,5 (4,5)	5,5 (3,5)	4,0 (3,0)	5,5 (4,0)	5,0 (3,5)	4,0 (3,0)	10,0		

Werte gültig für c_{cr.} Werte in Klammern gültig für Einzelanker mit c_{min}

²⁾ Für die Bemessung von V_{Rk,c} siehe ETAG029, Anhang C;

Tabelle C9: Verschiebungen

Automaio h	hef	N	δ_N/N	δ_{N0}	δN∞	V	δ_{V0}	δ _{V∞}
Ankergröße	[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	80	0,9	0.40	0,16	0,32	1,3	0,8	1,20
M10/IG-M6	90	1,4	0,18	0,26	0,51	1,8	1,2	1,80
M12/IG-M8	100	1,8	0.00	0,14	0,29	2,1	1,4	2,10
M16/IG-M10	100	2,3	0,08	0,19	0,37	2,3	1,5	2,25

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk

Leistungen Porenbeton - AAC6

Installationsparameter

Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast / Verschiebungen

Anhang C 5

Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.

Steintyp: Kalksandvollstein KS-NF

Tabelle C10: Beschreibung des Steins

Steintyp		Kalksandvollstein KS-NF	
Dichte	ρ [kg/dm³]	2,0	
Druckfestigkeit	$f_b \ge [N/mm^2]$	10, 20 oder 27	
Code		EN 771-2	
Hersteller (Ländercode	e)	z.B. Wemding (DE)	- 1
Steinabmessungen	[mm]	240 x 115 x 71	
Bohrverfahren		Hammer	

Tabelle C11: Installationsparameter

	[-]	Alle Größen	
Ccr	[mm]	1,5*h _{ef}	
C _{min}	[mm]	60	
Scr	[mm]	3*her	
Smin	[mm]	120	
	C _{min} S _{cr}	C _{min} [mm] s _{cr} [mm]	C _{cr} [mm] 1,5*h _{ef} C _{min} [mm] 60 s _{cr} [mm] 3*h _{ef}

Tabelle C12: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung		mit c ≥	mit s ≥	-		
A CANADA STATE OF THE STATE OF		60				1,0
II: Ankeranordnung parallel zur Lagerfuge		140	120	α _{g,N,II}		1,5
		1,5*hef	3*hef			2,0
⊥: Ankeranordnung		60	120	- 1	[-]	0,5
senkrecht zur	1 1	1,5*hef	120	$\alpha_{g,N,\perp}$		1,0
Lagerfuge		1,5*hef	3*hef		11	2,0

Tabelle C13: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

Anordnung		mit c ≥	mit s ≥			
W. Killiamon Const.		60	120			1,0
II: Ankeranordnung parallel zur Lagerfuge	V ••	115	120	α _{g, V,II}		1,7
		1,5*hef	3*h _{ef}		2.1	2,0
⊥: Ankeranordnung		60	120		1-1	1,0
senkrecht zur	V :	1,5*hef	120	$\alpha_{g,V,\perp}$		1,0
Lagerfuge		1,5*hef	3*hef			2,0

Tabelle C14: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnung		mit c ≥	mit s ≥		0.1	
II: Ankeranordnung		60	120			1,0
parallel zur Lagerfuge	V	1,5*hef	3*h _{ef}	α _{g,∨,li}	- 2	2,0
⊥: Ankeranordnung	1	60	120		H.	1,0
senkrecht zur Lagerfuge	V	1,5*hef	3*h _{ef}	$lpha_{g,V,\perp}$		2,0

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Leistungen Kalksandvollstein KS-NF	Anhang C 6
Beschreibung des Steins	
Installationsparameter	

Steintyp: Kalksandvollstein KS-NF

Tabelle C15: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

				3 - 3		•			
			Charakteristischer Widerstand						
			Nutzungskategorie						
Ankergröße	0:-11:	Effektive Verankerungs- tiefe		d/d			w/d w/w		d/d w/d w/w
Alikelgioise	Siebituise	uoro			120°C/72°C				Alle Temperatur- bereiche
		h_{ef}	1	$N_{Rk,b} = N_{Rk,b}$	1) p	1	$N_{Rk,b} = N_{Rk,b}$	1) p	$V_{Rk,b}^{(2)3)}$
		[mm]				[kN]			
			Druc	kfestigkeit	t f _b ≥ 10 N/n	nm²			
M8	•	80	4,5 (2,0)	4,5 (2,0)	3,0 (1,5)	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	2,5 (1,5)
M10 / IG- M6	•	90	4,5 (2,0)	4,5 (2,0)	3,0 (1,5)	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	3,0 (2,0)
M12 / IG- M8	•	100	4,5 (2,0)	4,5 (2,0)	3,0 (1,5)	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	2,5 (1,5)
M16 / IG- M10	•	100	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	3,0 (1,5)	3,5 (1,5)	2,0 (0,9)	2,5 (1,5)
M8	12x80	80	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	3,5 (1,5)	3,0 (1,5)	2,5 (1,2)	2,5 (1,5)
M8 / M10/	16x85	85	3,5 (1,5)	3,0 (1,5)	2,0 (0,9)	3,5 (1,5)	3,0 (1,5)	2,5 (1,2)	2,5 (1,5)
IG-M6	16x130	130	3,5 (1,5)	3,0 (1,5)	2,0 (0,9)	3,5 (1,5)	3,0 (1,5)	2,5 (1,2)	2,5 (1,5)
M12 / M16	20x85	85	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	2,5 (1,5)
/ IG-M8 /	20x130	130	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	2,5 (1,5)
IG-M10	20x200	200	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	2,5 (1,5)
			Druc	kfestigkeil	t f _b ≥ 20 N/n	nm²			
M8	-	80	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	5,0 (2,5)	5,0 (2,5)	3,5 (1,5)	4,0 (2,5)
M10 / IG-M6	6 -	90	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	5,0 (2,5)	5,0 (2,5)	3,5 (1,5)	4,5 (2,5)
M12/ IG-M8	-	100	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	5,0 (2,5)	5,0 (2,5)	3,5 (1,5)	4,0 (2,5)
M16/ IG- M10	-	100	5,0 (2,5)	5,0 (2,5)	3,5 (1,5)	5,0 (2,5)	5,0 (2,5)	3,5 (1,5)	4,0 (2,5)
M8	12x80	80	5,5 (2,5)	5,0 (2,5)	3,5 (1,5)	4,5 (2,0)	4,5 (2,0)	3,0 (1,5)	4,0 (2,5)
M8 / M10/	16x85	85	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	4,0 (2,5)
IG-M6	16x130	130	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	4,0 (2,5)
M12 / M16 /	20x85	85	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,5)
IG-M8 / IG-	20x130	130	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,5)
M10	20x200	200	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,5)
1\									

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Kalksandvollstein KS-NF	Anhang C 7
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast	

¹⁾Werte gültig für c_{cr} , Werte in Klammern gültig für Einzelanker mit c_{min} ²⁾ Für c_{cr} Bemessung von $V_{Rk,c}$ siehe ETAG 029, Anhang C; Werte in Klammern $V_{Rk,b} = V_{Rk,c}$ gültig für Einzelanker mit

 c_{min} Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.

Steintyp: Kalksandvollstein KS-NF

Tabelle C16: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)

					Charakt	eristischer	Widerstan	d			
					Nι	utzungskat	egorie				
A nkovanë C o	Ciahbiila a	Effektive Verankerungs- tiefe		d/d			d/d w/d w/w				
Ankergröße	Siednuise	tiere			120°C/72°C				Alle Temperatur- bereiche		
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$	1)	1	$V_{Rk,b}^{2)3)}$				
		[mm]		$N_{Rk,b} = N_{Rk,p}^{1}$ $N_{Rk,b} = N_{Rk,p}^{1}$ [kN]							
Druckfestigkeit f _b ≥ 27 N/mm ²											
M8	-	80	7,0 (3,5)	6,5 (3,0)	5,0 (2,5)	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	4,5 (2,5)		
M10 / IG- M6	-	90	7,0 (3,5)	6,5 (3,0)	5,0 (2,5)	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	5,5 (3,0)		
M12 / IG- M8	-	100	7,0 (3,5)	6,5 (3,0)	5,0 (2,5)	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	4,5 (2,5)		
M16 / IG- M10	-	100	6,0 (3,0)	5,5 (2,5)	4,5 (2,0)	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	4,5 (2,5)		
M8	12x80	80	6,5 (3,0)	6,0 (3,0)	4,5 (2,0)	5,5 (2,5)	5,0 (2,5)	3,5 (1,5)	4,5 (2,5)		
M8 / M10/	16x85	85	5,5 (2,5)	5,0 (2,5)	4,0 (2,0)	5,5 (2,5)	5,0 (2,5)	4,0 (2,0)	4,5 (2,5)		
IG-M6	16x130	130	5,5 (2,5)	5,0 (2,5)	4,0 (2,0)	5,5 (2,5)	5,0 (2,5)	4,0 (2,0)	4,5 (2,5)		
M12 / M16	20x85	85	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	4,5 (2,5)		
/ IG-M8 /	20x130	130	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	4,5 (2,5)		
IG-M10	20x200	200	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	4,5 (2,5)		

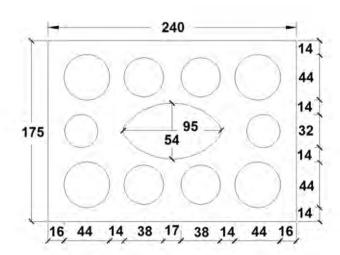
Tabelle C17: Verschiebungen

Ankergröße	Siebhülse	Effektive Verankerungs- tiefe h _{ef}	N	δ _N / N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	δ _{V∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	-	80					1,7	0,90	1,35
M10 / IG-M6	-	90	2,0		0,30	0,60	2,0	1,10	1,65
M12 / IG-M8	-	100							
M16 / IG-M10	-	100	1,7	0,15	0,26	0,51			
M8	12x80	80		0,10					
M8 / M10/	16x85	85	1 1		0.21	0.42	1,7	0,90	1,35
IG-M6	16x130	130	1,4		0,21	0,43			
M12 / M16 /	20x85	85							
IG-M8 /	20x130	130	1,3		0,19	0,39			
IG-M10	20x200	200							

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Kalksandvollstein KS-NF	Anhang C 8
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)	
Verschiebungen	

Werte gültig für c_{cr} , Werte in Klammern gültig für Einzelanker mit c_{min} Für c_{cr} Bemessung von $V_{Rk,c}$ siehe ETAG 029, Anhang C; Werte in Klammern $V_{Rk,b} = V_{Rk,c}$ für Einzelanker mit

Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.



Steintyp: Kalksandlochstein KS L-3DF

Tabelle C18: Beschreibung des Steins

Steintyp		Kalksandlochstein KSL-3DF	
Dichte	ρ [kg/dm³]	1,4	
Druckfestigkeit	$f_b \ge [N/mm^2]$	8, 12 oder 14	
Code	_	EN 771-2	
Hersteller (Ländercod	e)	z.B. Wemding (DE)	
Steinabmessungen	[mm]	240 x 175 x 113	
Bohrverfahren		Drehend	-4

Tabelle C19: Installationsparameter

Installationsparameter

Ankergröße		[-]	Alle Größen	
Randabstand	Ccr	[mm]	100 (120) ¹⁾	
Minimaler Randabstand	C _{min}	[mm]	60	
Acheebatead	S _{cr,II}	[mm]	240	
Achsabstand	S _{cr,⊥}	[mm]	120	
Minimaler Achsabstand	Smin	[mm]	120	

Werte in Klammern f
ür SH20x85; SH20x130 und SH20x200

Tabelle C20: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung	mit c ≥	mit s ≥		1	
II: Ankeranordnung parallel zur Lagerfuge	60	120			1,5
	C _{cr}	240	α _{g,N,II}		2,0
	160	120		[-]	2,0
⊥: Ankeranordnung	60	120	113.11		1,0
senkrecht zur Lagerfuge	C _{cr}	120	$\alpha_{g,N,\perp}$		2,0

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Kalksandlochstein KS L-3DF	Anhang C 9
Beschreibung des Steins	

Steintyp: Kalksandlochstein KS L-3DF

Tabelle C21: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge		60	120			1,0
	V ••	160	120	α _{g, \/, ii}		1,6
		C _{Cf}	240	- 0.3	[-]	2,0
⊥: Ankeranordnung		60	120			1,0
senkrecht zur Lagerfuge	V .	C _{cr}	120	$\alpha_{g,V,\perp}$		2,0

Tabelle C22: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnung	mit c ≥	mit s ≥			
II: Ankeranordnung	60	120	2000		1,0
parallel zur Lagerfuge	C _{cr}	240	$\alpha_{g,V,II}$	[-]	2,0
⊥: Ankeranordnung	60	120	1		1,0
senkrecht zur Lagerfuge	C _{cr}	120 $\alpha_{g,V,\perp}$			2,0

Tabelle C23: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

		- 6			Charakt	eristischer \	Viderstand		
		gg			N	utzungskate	gorie		
Autor	0:-1			d/d				d/d; w/d; w/w	
Anker- größe	Sieb- hülse		40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur -bereiche
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$	1)		1)	V _{Rk,b} ⁴⁾	
		[mm]				[kN]			
			Di	uckfestigk	eit f _b ≥ 8 N/	mm²			
M8	12x80	80	1,5	1,5	1,2	1,5	1,2	0,9	$2,5^{2)}(0,9)^{3)}$
M8 / M10	16x85	85	1,5	1,5	1,2	1,5	1,5	1,2	$4,0^{2)}(1,5)^{3)}$
/ IG-M6	16x130	130	1,5	1,5	1,2	1,5	1,5	1,2	4,0 ²⁾ (1,5) ³⁾
M12 /	20x85	85	4,5	4,0	3,0	4,5	4,0	3,0	$4,0^{2}$ $(1,5)^{3}$
M16 / IG-M8 /	20x130	130	4,5	4,0	3,0	4,5	4,0	3,0	$4,0^{2)}(1,5)^{3)}$
IG-M10	20x200	200	4,5	4,0	3,0	4,5	4,0	3,0	4,0 ²⁾ (1,5) ³⁾
- T- T- W			Dr	uckfestigk	eit f _b ≥ 12 N	mm ²			
M8	12x80	80	2,0	2,0	1,5	2,0	1,5	1,2	$3,0^{2)}(1,2)^{3)}$
M8 / M10	16x85	85	2,0	2,0	1,5	2,0	2,0	1,5	$4,5^{2)}(1,5)^{3)}$
/ IG-M6	16x130	130	2,5	2,5	1,5	2,5	2,5	1,5	$4,5^{2)}(1,5)^{3)}$
M12 /	20x85	85	6,0	5,5	4,0	6,0	5,5	4,0	$4,5^{2)}(1,5)^{3)}$
M16 / IG-M8 /	20x130	130	6,0	5,5	4,0	6,0	5,5	4,0	4,5 ²⁾ (1,5) ³⁾
IG-M10	20x200	200	6,0	5,5	4,0	6,0	5,5	4,0	$4,5^{2)}(1,5)^{3)}$

Werte gültig für c_{cr} und c_{min}

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk

Leistungen Kalksandlochstein KS L-3DF

Installationsparameter (Fortsetzung)

Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

Anhang C 10

 $V_{Rk,c,ll} = V_{Rk,b}$ gültig für Querzuglasten parallel zum freien Rand

³⁾ $V_{Rkc,\perp} = V_{Rk,b}$ (Klammerwert) gültig für Querzuglasten in Richtung zum freien Rand

⁴⁾ Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rkb} mit 0,8 zu multiplizieren.

Steintyp: Kalksandlochstein KS L-3DF

Tabelle C24: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)

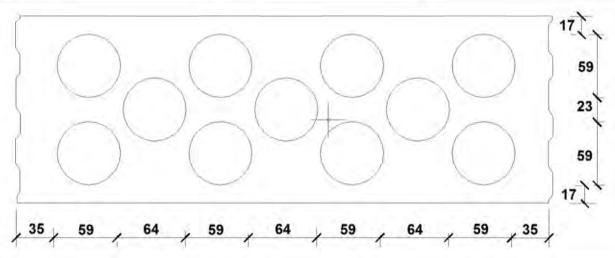
				Charakteristischer Widerstand							
		ggs	Nutzungskategorie								
Ankon	Sigh	Effektive /erankerungs- tiefe		d/d w/w				d/d			d/d; w/d; w/w
Anker- größe	hülse	Sieb- hülse	Eff Veran t	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur -bereiche	
	h _{ef}		$N_{Rk,b} = N_{Rk,p}^{1)}$				$V_{Rk,b}^{4)}$				
		[mm]				[kN]					
			Dr	uckfestigke	eit f _b ≥ 14 N/	mm²					
M8	12x80	80	2,5	2,5	1,5	2,0	2,0	1,5	$3,5^{2)}(1,5)^{3)}$		
M8 / M10	16x85	85	2,5	2,5	1,5	2,5	2,5	1,5	$6,0^{2)}(2,0)^{3)}$		
/ IG-M6	16x130	130	2,5	2,5	2,0	2,5	2,5	2,0	$6,0^{2)}(2,0)^{3)}$		
M12 /	20x85	85	6,5	6,0	4,5	6,5	6,0	4,5	$6,0^{2)}(2,0)^{3)}$		
M16 / IG-M8 /	20x130	130	6,5	6,0	4,5	6,5	6,0	4,5	$6,0^{2)}(2,0)^{3)}$		
IG-M10	20x200	200	6,5	6,0	4,5	6,5	6,0	4,5	$6,0^{2)}(2,0)^{3)}$		

Tabelle C25: Verschiebungen

M8 M8 / M10 / IG-M6 M12 / M16 / IG-M8 / IG-M10	Siebhülse	Effektive Verankerungs- tiefe h _{ef}	N	δ _N / N	δ_{NO}	δ _{N∞}	V	$\delta_{ m V0}$	δ _{V∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80					1,0	1,0	1,50
	16x85	85	0,71		0,64 1,29	1,29		1,9	2,85
	16x130	130		0,90					
M12 / M16 /	20x85	85		0,90			1,7		
	20x130	130	1,86		1,67	3,34	'		
IG-M10	20x200	200							

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Kalksandlochstein KS L-3DF	Anhang C 11
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)	
Verschiebungen	

Werte gültig für c_{cr} und c_{min} $V_{Rk,c,ll} = V_{Rk,b}$ gültig für Querzuglasten parallel zum freien Rand $V_{Rk,c,\perp} = V_{Rk,b}$ (Klammerwert) gültig für Querzuglasten in Richtung zum freien Rand Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.



Steintyp: Kalksandlochstein KS L-12DF

Tabelle C26: Beschreibung des Steins

Steintyp		Kalksandlochstein KSL-12DF	
Dichte	ρ [kg/dm³]	1,4	
Druckfestigkeit	$f_b \ge [N/mm^2]$	10, 12 oder 16	1
Code		EN 771-2	
Hersteller (Ländercod	e)	z.B. Wemding (DE)	
Steinabmessungen	[mm]	498 x 175 x 238	
Bohrverfahren		Drehend	

Tabelle C27: Installationsparameter

Ankergröße		[-]	Alle Größen	
Randabstand	Ccr	[mm]	100 (120) ¹⁾	
Minimaler Randabstand	C _{min} ²⁾	[mm]	100 (120) ¹⁾	
Ashashatand	S _{cr,II}	[mm]	498	
Achsabstand	S _{cr.⊥}	[mm]	238	
Minimaler Achsabstand	Smin	[mm]	120	

Werte in Klammern für SH20x85 und SH20x130

Tabelle C28: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung	mit c ≥	mit s ≥		-	
II: Ankeranordnung	100	120	T (2,172)		1,0
parallel zur Lagerfuge	C _{cr}	498	α _{g,N,II}		2,0
⊥: Ankeranordnung	100	120		[-]	1,0
senkrecht zur Lagerfuge	Ccr	238	$\alpha_{g,N,\perp}$, '-b !	2,0

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk		
Leistungen Kalksandlochstein KS L-12DF	Anhang C 12	
Beschreibung des Steins		
Installationsparameter		

²⁾ Für V_{Rk,c}: c_{min} gemäß ETAG 029, Anhang C

Steintyp: Kalksandlochstein KS L-12DF

Tabelle C29: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V	C _{cr}	498	$\alpha_{g,V,ii}$		2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{cr}	238	$\alpha_{g, V, \perp}$	E	2,0

Tabelle C30: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V	C _{cr}	498	$\alpha_{g,V,II}$	ž4	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{cr}	238	$\alpha_{g,V,\perp}$	Ы	2,0

Tabelle C31: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

					Charak	teristischer	Widerstar	nd				
		'n		Nutzungskategorie								
Ankergröße	Ciabbilla	Effektive Verankerungs		d/d			d/d w/d w/w					
	Siebhülse	Siednuise	Vera						120°C/72°C	Alle Temperatur- bereiche		
		h _{ef}		$N_{Rk,b} = N_{Rk,b}$	1)	1	$N_{Rk,b} = N_{Rk,b}$	1) p	$V_{Rk,b}^{(2)3)}$			
		[mm]				[kN]		A				
			Druck	festigkeit	f _b ≥ 10 N/n	nm²						
M8	12x80	80	0,6	0,6	0,4	0,5	0,5	0,4	2,5			
M8 / M10 /	16x85	85	0,6	0,6	0,4	0,6	0,6	0,4	5,5			
IG-M6	16x130	130	2,5	2,5	2,0	2,5	2,5	2,0	5,5			
M12 / M16 /	20x85	85	1,5	1,5	0,9	1,5	1,5	0,9	5,5			
IG-M8 / IG-M10	20x130	130	2,5	2,5	2,0	2,5	2,5	2,0	5,5			
			Druck	festigkeit	f _b ≥ 12 N/n	nm²						
M8	12x80	80	0,75	0,6	0,5	0,6	0,6	0,4	3,0			
M8 / M10 /	16x85	85	0,75	0,6	0,5	0,75	0,6	0,5	6,5			
IG-M6	16x130	130	3,0	3,0	2,0	3,0	3,0	2,0	6,5			
M12 / M16 /	20x85	85	1,5	1,5	1,2	1,5	1,5	1,2	6,5			
IG-M8 / IG-M10	20x130	130	3,0	3,0	2,0	3,0	3,0	2,0	6,5			

Werte gültig für c_{cr} und c_{min}

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	49.e. J.A.	
Leistungen Kalksandlochstein KS L-12DF	Anhang C 13	
Installationsparameter (Fortsetzung)		
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast		

Bemessung von V_{Rk,c} siehe ETAG 029, Anhang C, außer für Querzugbelastung parallel zum freien Rand mit c ≥ 120 mm: $V_{Rk,c,ll} = V_{Rk,b}$ Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.

Steintyp: Kalksandlochstein KS L-12DF

Tabelle C32: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)

				Charakteristischer Widerstand								
		رم د		Nutzungskategorie								
		Effektive Verankerungs tiefe		d/d		w/d w/w			d/d w/d w/w			
Ankergröße	Siebhülse Siebhülse							120°C/72°C	Alle Temperatur- bereiche			
		h _{ef}	1	$N_{Rk,b} = N_{Rk,p}^{1}$			$N_{Rk,b} = N_{Rk,b}$	1) p	$V_{Rk,b}^{(2)3)}$			
		[mm]				[kN]						
			Druck	destigkeit	f _b ≥ 16 N/n	nm²						
M8	12x80	80	0,9	0,9	0,6	0,75	0,75	0,5	3,5			
M8 / M10 /	16x85	85	0,9	0,9	0,6	0,9	0,9	0,6	8,0			
IG-M6	16x130	130	4,0	3,5	2,5	4,0	3,5	2,5	8,0			
M12 / M16 /	20x85	85	2,0	2,0	1,5	2,0	2,0	1,5	8,0			
IG-M8 / IG-M10	20x130	130	4,0	3,5	2,5	4,0	3,5	2,5	8,0			

Tabelle C33: Verschiebungen

Ankergröße	Siebhülse	Effektive Verankerungs- tiefe h _{ef}	N	δ _N / N	δ_{NO}	$\delta_{N^{\boldsymbol{\infty}}}$	V	$\delta_{ m V0}$	δ _{V∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0.26		0.22	0.46	1,0	1,3	1,95
M8 / M10 /	16x85	85	0,26		0,23	0,46			
IG-M6	16x130	130	1,14	0,90	1,03	2,06			
M12 / M16	20x85	85	0,57		0,51	1,03	2,3	2,5	3,75
/ IG-M8 / IG-M10	20x130	130	1,14		1,03	2,06			

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Kalksandlochstein KS L-12DF	Anhang C 14
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)	
Verschiebungen	

Werte gültig für c_{cr} und c_{min} Bemessung von V_{Rk,c} siehe ETAG 029, Anhang C, außer für Querzugbelastung parallel zum freien Rand mit c ≥ 120 mm: $V_{Rk,c,II} = V_{Rk,b}$

Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.

Steintyp: Mauerziegel Mz-DF

Tabelle C34: Beschreibung des Steins

Steintyp		Mauerziegel Mz-DF	
Dichte	ρ [kg/dm³]	1,6	
Druckfestigkeit	$f_b \ge [N/mm^2]$	10, 20 oder 28	
Code		EN 771-1	
Hersteller (Ländercoc	le)	z.B. Unipor (DE)	
Steinabmessungen	[mm]	240 x 115 x 55	
Bohrverfahren		Hammer	

Tabelle C35: Installationsparameter

Ankergröße		[-]	Alle Größen	
Randabstand	Cor	[mm]	1,5*h _{ef}	
Minimaler Randabstand	Cmin	[mm]	60	
Achsabstand	Scr	[mm]	3*h _{ef}	
Minimaler Achsabstand	Smin	[mm]	120	

Tabelle C36: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung	mit c ≥	mit s ≥	0		
II: Ankeranordnung	60	120			0,7
parallel zur Lagerfuge	1,5*hef	3*h _{ef}	α _{g,N,ll}		2,0
⊥: Ankeranordnung	60	120		[-]	0,5
senkrecht zur	1,5*hef	120	α _{g,N,⊥}		1,0
Lagerfuge	1,5*hef	3*h _{ef}			2,0

Tabelle C37: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

Anordnur	g	mit c ≥	mit s ≥			
At A construction of		60	120			0,5
II: Ankeranordnung parallel zur Lagerfuge	V • •	90	120	α _{g,V,II}		1,1
parallel zur Lagerruge		1,5*hef	3*hef			2,0
1: Ankeranordnung senkrecht zur		60	120		[-]	0,5
	V	1,5*hef	120	$\alpha_{g,V,\perp}$		1,0
Lagerfuge	11	1,5*hef	3*hef			2,0

Tabelle C38: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnun	g	mit c ≥	mit s ≥			
447 47 47 47 47 47 47 47 47 47 47 47 47		60	120			0,5
parallel zur Lagerfuge	: Ankeranordnung	1,5*hef	f 120			1,0
parallel zur Lagerruge		1,5*hef	3*h _{ef}			2,0
1: Ankeranordnung senkrecht zur		60	120		[-]	0,5
	V	1,5*hef	120	$\alpha_{g,V,\perp}$		1,0
Lagerfuge		1,5*hef	3*hef			2,0

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	499 e 1122 e
Leistungen Mauerziegel Mz-DF	Anhang C 15
Beschreibung des Steins	
Installationsparameter	

Steintyp: Mauerziegel Mz-DF
Taballa C39: Charakteristische Worte der Tranfähigkeit unter Zug- und Querzuglast

			Charakteristischer Widerstand						
			Nutzungskategorie						
Ankergröße	Siebhülse	Effektive Verankerungs- tiefe		d/d w/d w/w					
			40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur bereiche			
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{1}$)	V _{Rk,b} ²⁾³⁾			
		[mm]							
		Druckfestigk	ceit f _b ≥ 10 N/n	nm²					
M8	-	80	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	3,5 (1,2)			
M10 / IG-M6	-	90	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)			
M12 / IG-M8	-	100	4,0 (2,0)	4,0 (2,0)	3,5 (1,5)	3,5 (1,2)			
M16 / IG-M10	-	100	4,0 (2,0)	4,0 (2,0)	3,5 (1,5)	5,5 (1,5)			
M8	12x80	80	3,5 (1,5)	3,5 (1,5)	3,0 (1,2)	3,5 (1,2)			
M8 / M10 /	16x85	85	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)			
IG-M6	16x130	130	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)			
M12 / M16 /	20x85	85	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)			
IG-M8 /	20x130	130	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)			
IG-M10	20x200	200	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)			
		Druckfestigk	ceit f _b ≥ 20 N/r						
M8	-	80	4,5 (2,5)	4,5 (2,5)	4,0 (2,0)	5,0 (1,5)			
M10 / IG-M6	-	90	5,5 (2,5)	5,5 (2,5)	4,5 (2,0)	5,0 (1,5)			
M12 / IG-M8	-	100	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,0 (1,5)			
M16 / IG-M10	-	100	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	8,0 (2,5)			
M8	12x80	80	4,5 (2,5)	4,5 (2,5)	4,0 (2,0)	5,0 (1,5)			
M8 / M10 /	16x85	85	5,0 (2,5)	5,0 (2,5)	4,0 (2,0)	5,0 (1,5)			
IG-M6	16x130	130	5,0 (2,5)	5,0 (2,5)	4,0 (2,0)	5,0 (1,5)			
M12 / M16 /	20x85	85	5,0 (2,5)	5,0 (2,5)	4,0 (2,0)	5,0 (1,5)			
IG-M8 /	20x130	130	5,0 (2,5)	5,0 (2,5)	4,0 (2,0)	5,0 (1,5)			
IG-M10	20x200	200	5,0 (2,5)	5,0 (2,5)	4,0 (2,0)	5,0 (1,5)			
,		Druckfestigk	ceit f _b ≥ 28 N/n		, , ,				
M8	-	80	5,5 (2,5)	5,5 (2,5)	4,5 (2,5)	5,5 (2,0)			
M10 / IG-M6	-	90	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)			
M12 / IG-M8	-	100	7,0 (3,5)	7,0 (3,5)	6,0 (3,0)	5,5 (2,0)			
M16 / IG-M10	-	100	7,0 (3,5)	7,0 (3,5)	6,0 (3,0)	9,0 (3,0)			
M8	12x80	80	5,5 (2,5)	5,5 (2,5)	4,5 (2,5)	5,5 (2,0)			
M8 / M10 /	16x85	85	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)			
IG-M6	16x130	130	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)			
M12 / M16 /	20x85	85	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)			
IG-M8 /	20x130	130	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)			
IG-M10	20x200	200	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)			

 $[\]begin{array}{c} c_{min} \\ \text{Die Werte gelten für Stahl 5.6 oder höher.} \end{array} \\ \begin{array}{c} \text{Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.} \end{array}$

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Mauerziegel Mz-DF	Anhang C 16
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast	

Werte gültig für c_{cr} , Werte in Klammern gültig für Einzelanker mit c_{min} Für c_{cr} Bemessung von $V_{Rk,c}$ siehe ETAG 029, Anhang C; Werte in Klammern $V_{Rk,b} = V_{Rk,c}$ für Einzelanker mit

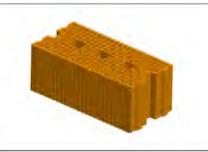
Steintyp: Ma	uerziegel Mz-DF
Tabelle C40:	Verschiebungen

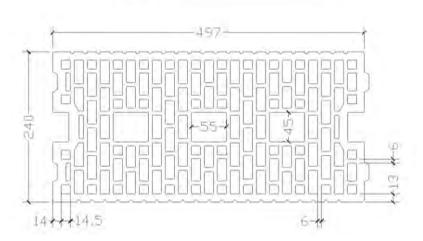
Ankergröße	Siebhülse	Effektive Verankerungs- tiefe h _{ef}	N	δ _N / N	δ_{NO}	$\delta_{N^{\infty}}$	V	$\delta_{ m V0}$	δ _{√∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	-	80	1,3		0,19	0,39			
M10 / IG-M6	-	90	1,6		0,24	0,47	1,9		
M12 / IG-M8	-	100	17		0,26	0,51			
M16 / IG-M10	-	100	1,7		0,26	0,51	2,9		
M8	12x80	80		0.15				1,00	1.50
M8 / M10 /	16x85	85		0,15				1,00	1,50
IG-M6	16x130	130	12		0.10	0.20	1.0		
M12 / M16 /	20x85	85	1,3		0,19	0,39	1,9		
IG-M8 /	20x130	130							
IG-M10	20x200	200							

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk

Leistungen Mauerziegel Mz-DF

Anhang C 17


Verschiebungen



Steintyp: Hochlochziegel HLz-16-DF

Tabelle C41: Beschreibung des Steins

Steintyp		Hochlochziegel HLz-16-DF	
Dichte	ρ [kg/dm³]	0,8	
Druckfestigkeit	$f_b \ge [N/mm^2]$	6, 8, 12 oder 14	
Code		EN 771-1	
Hersteller (Ländercode)	z.B. Unipor DE)	
Steinabmessungen	[mm]	497 x 240 x 238	
Bohrverfahren	7-4-	Drehend	

Tabelle C42: Installationsparameter

Ankergröße		[-]	Alle Größen	
Randabstand	Cor	[mm]	100 (120) ¹⁾	
Minimaler Randabstand	C _{min} ²⁾	[mm]	100 (120) ¹⁾	
Augusta (August	S _{cr.II}	[mm]	497	
Achsabstand	S _{cr,⊥}	[mm]	238	
Minimaler Achsabstand	Smin	[mm]	100	

Werte in Klammern für SH20x85; SH20x130 und SH20x200 Für $V_{Rk,c}$: c_{min} gemäß ETAG 029, Anhang C

Tabelle C43: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung	mit c ≥	mit s ≥		Δ	
II: Ankeranordnung	C _{cr}	100		1	1,3
parallel zur Lagerfuge	C _{cr}	497	α _{g,N,II}	7.1	2,0
⊥: Ankeranordnung	C _{cr}	100		[-]	1,1
senkrecht zur Lagerfuge	C _{cr}	238	$\alpha_{g,N,\perp}$		2,0

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	1000 m 1000
Leistungen Hochlochziegel HLz-16DF	Anhang C 18
Beschreibung des Steins	
Installationsparameter	

Steintyp: Hochlochziegel HLz-16-DF

Tabelle C44: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

Anordnung	-	mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	•	C _{Cr}	497	$\alpha_{g,V,II}$	221	2,0
L: Ankeranordnung senkrecht zur Lagerfuge	1	C _{cr}	238	$\alpha_{g,V,\perp}$	[F]	2,0

Tabelle C45: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnun	g	mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V	Ccr	497	$\alpha_{g,V,II}$	44	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{cr}	238	$\alpha_{g,V,\perp}$	Н	2,0

Tabelle C46: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

				Charakterist	tischer Widersta	and			
	The state of the s		Nutzungskategorie						
Ankergröße	Siebhülse	Effektive Verankerungs- hülse tiefe		d/d w/d w/w					
			40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche			
		h _{ef}	$N_{Rk,b} = N_{Rk,p}^{-1}$		V _{Rk,b} ²⁾³⁾				
		[mm]		[kN]					
		Druckfestig	keit f _b ≥ 6 N/n	nm²					
M8	12x80	80	2,5	2,5	2,0	2,5			
M8 / M10/ IG-	16x85	85	2,5	2,5	2,0	4,5			
M6	16x130	130	3,5	3,5	3,0	4,5			
NA 0 / NA 0 / 10	20x85	85	2,5	2,5	2,0	5,0			
M12 / M16 / IG- M8 / IG-M10	20x130	130	3,5	3,5	3,0	6,0			
IVIO / IG-IVI IO	20x200	200	3,5	3,5	3,0	6,0			
		Druckfestig	keit f _b ≥ 8 N/n	nm²					
M8	12x80	80	3,0	3,0	2,5	3,0			
M8 / M10/ IG-	16x85	85	3,0	3,0	2,5	5,5			
M6	16x130	130	4,5	4,5	3,5	5,5			
MAD / MAG / IC	20x85	85	3,0	3,0	2,5	6,0			
M12 / M16 / IG- M8 / IG-M10	20x130	130	4,5	4,5	3,5	7,0			
IVIO / IG-IVI IO	20x200	200	4,5	4,5	3,5	7,0			

Werte gültig für c_{cr} und c_{min}

Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk.b} mit 0,8 zu multiplizieren.

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	49-00
Leistungen Hochlochziegel HLz-16DF	Anhang C 19
Installationsparameter (Fortsetzung)	
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast	

Bemessung von V_{Rk,c} siehe ETAG 029, Anhang C, außer für Querzugbelastung parallel zum freien Rand mit c ≥ 125 mm: V_{Rk,c,ll} = V_{Rk,b}

Steintyp: Hochlochziegel HLz-16-DF

Tabelle C47: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)

				Charakterist	ischer Widersta	and			
			Nutzungskategorie						
Ankergröße	Siebhülse	Effektive Verankerungs- tiefe		d/d w/d w/w					
				80°C/50°C	120°C/72°C	Alle Temperatur- bereiche			
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{-1}$		$V_{Rk,b}^{(2)3)}$			
		[mm]							
		Druckfestigk	eit f _b ≥ 12 N/r	nm²					
M8	12x80	80	3,5	3,5	3,0	4,0			
M8 / M10/ IG-	16x85	85	3,5	3,5	3,0	6,5			
M6	16x130	130	5,0	5,0	4,5	6,5			
M40 / M40 / IO	20x85	85	3,5	3,5	3,0	7,0			
M12 / M16 / IG- M8 / IG-M10	20x130	130	5,0	5,0	4,5	9,0			
I WIO / IG-IVI IO	20x200	200	5,0	5,0	4,5	9,0			
		Druckfestigk	eit f _b ≥ 14 N/r	nm²					
M8	12x80	80	4,0	4,0	3,0	4,0			
M8 / M10/ IG-	16x85	85	4,0	4,0	3,0	6,5			
M6	16x130	130	5,5	5,5	4,5	6,5			
N40 / N40 / IO	20x85	85	4,0	4,0	3,0	7,0			
M12 / M16 / IG- M8 / IG-M10	20x130	130	5,5	5,5	4,5	9,0			
IVIO / IG-IVI IU	20x200	200	5,5	5,5	4,5	9,0			

Werte gültig für c_{cr} und c_{min}

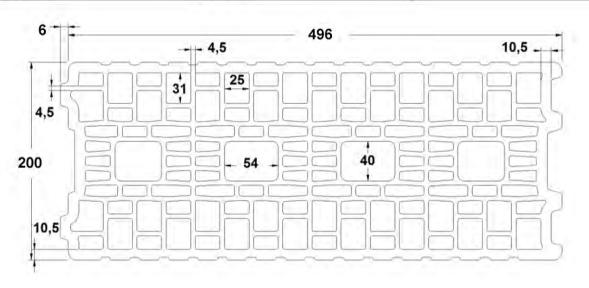
Tabelle C48: Verschiebungen

Ankergröße	Siebhülse	Effektive Verankerungs- tiefe h _{ef}	N	δ _N / N	δ_{NO}	δ _{N∞}	V	$\delta_{ m V0}$	δ _{V∞}		
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]		
M8	12x80	80	1 11		0.11	0.22	1,10	1,20	1,80		
M8 / M10/	16x85	85	1,14		0,11	0,23	0,23	0,23	1,86	1,50	2,25
IG-M6	16x130	130	1,57	0.40	0,16	0,31	1,00	1,50	2,25		
M12 / M16 /	20x85	85	1,14	0,10	0,11	0,23	1,86	1,50	2,25		
IG-M8 / IG-	20x130	130	1,57		0.16	0.31	2.57	2 10	3,15		
M10	20×200	200	1,57		0,16	0,31	2,57	2,10	3, 15		

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Hochlochziegel HLz-16DF	Anhang C 20
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)	
Verschiebungen	

Bemessung von $V_{Rk,c}$ siehe ETAG 029, Anhang C, außer für Querzugbelastung parallel zum freien Rand mit c \geq 125 mm: $V_{Rk,c,ll} = V_{Rk,b}$

Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.



Steintyp: Lochziegel Porotherm Homebric

Tabelle C49: Beschreibung des Steins

Steintyp	Lochziegel Porotherm Homebric
Dichte ρ [kg/dm ³]	0,7
Druckfestigkeit $f_b \ge [N/mm^2]$	4, 6 oder 10
Code	EN 771-1
Hersteller (Ländercode)	z.B. Wienerberger (FR)
Steinabmessungen [mm]	500 x 200 x 299
Bohrverfahren	Drehend

Tabelle C50: Installationsparameter

Ankergröße		[-]	Alle Größen			
Randabstand	Cor	[mm]	100 (120) ¹⁾			
Minimaler Randabstand	C _{min} ²⁾	[mm]	100 (120) ¹⁾			
Ashasharad	S _{cr,II}	[mm]	500			
Achsabstand	S _{cr,⊥}	[mm]	299			
Minimaler Achsabstand	Smin	[mm]	100			

¹⁾ Werte in Klammern für SH20x85 und SH20x130

Tabelle C51: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung		mit c ≥	mit s ≥			1
II: Ankeranordnung		200	100			2,0
parallel zur Lagerfuge	10	C _{cr}	500	α _{g,N,II}		2,0
⊥: Ankeranordnung		200	100		[-]	1,2
senkrecht zur Lagerfuge	•	C _{Cr}	299	$\alpha_{g,N,\perp}$		2,0

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk		
Leistungen Lochziegel Porotherm Homebric	Anhang C 21	
Beschreibung des Steins		
Installationsparameter		

Für V_{Rk,c}: c_{min} gemäß ETAG 029, Anhang C

Steintyp: Lochziegel Porotherm Homebric

Tabelle C52: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

Anordnung	Anordnung mit c ≥				
II: Ankeranordnung parallel zur Lagerfuge	C _{cr}	500	$\alpha_{g, V, ii}$		2,0
1: Ankeranordnung senkrecht zur Lagerfuge	C _{cr}	299	$\alpha_{g,V,\perp}$	[-]	2,0

Tabelle C53: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnur	ng	mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V	Car	500	$\alpha_{g,V,II}$	i d	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{CF}	299	$\alpha_{g,V,\perp}$	Ы	2,0

Tabelle C54: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

				Charakte	eristischer Wide	erstand	
			Nutzungskategorie				
Ankergröße	Siebhülse	Effektive Verankerungs- tiefe			d/d w/d w/w		
10/10/2001			40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche	
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$)	$V_{Rk,b}^{(2)3)}$	
		[mm]		[kN]			
		Druckfest	igkeit f _b ≥ 4	N/mm ²			
M8	12x80	80	0,9	0,9	0,75	2,0	
MO / M40/ IO MO	16x85	85	0,9	0,9	0,75	2,0	
M8 / M10/ IG-M6	16x130	130	1,2	1,2	0,9	2,0	
M12 / M16 /	20x85	85	0,9	0,9	0,75	2,5	
IG-M8 / IG-M10	20x130	130	1,2	1,2	0,9	2,5	
		Druckfest	igkeit f _b ≥ 6	N/mm²			
M8	12x80	80	0,9	0,9	0,9	2,5	
MO / MAO/ IO MO	16x85	85	0,9	0,9	0,9	2,5	
M8 / M10/ IG-M6	16x130	130	1,2	1,2	1,2	2,5	
M12 / M16 /	20x85	85	0,9	0,9	0,9	3,0	
IG-M8 / IG-M10	20x130	130	1,2	1,2	1,2	3,0	

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Lochziegel Porotherm Homebric	Anhang C 22
Installationsparameter (Fortsetzung)	
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast	

Werte gültig für c_{cr} und c_{min} Bemessung von $V_{Rk,c}$ siehe ETAG 029, Anhang C, außer für Querzugbelastung parallel zum freien Rand mit $c \ge 200 \text{ mm}$: $V_{Rk,c,ll} = V_{Rk,b}$ Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.

Steintyp: Lochziegel Porotherm Homebric

Tabelle C55: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)

				Charakte	eristischer Wic	derstand
				Nu	tzungskatego	rie
		Effektive		d/d		d/d
		Verankerungs-		w/d		w/d
Ankergröße	Siebhülse	tiefe		w/w		w/w
, and gross	Sissilais S		40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche
		h _{ef}	$N_{Rk,b} = N_{Rk,p}^{-1}$			$V_{Rk,b}^{(2)3)}$
		[mm]	[kN]		[kN]	
		Druckfesti	gkeit f _b ≥ 10	N/mm ²		
M8	12x80	80	1,2	1,2	1,2	3,0
Me / Mao/ IC Me	16x85	85	1,2	1,2	1,2	3,0
M8 / M10/ IG-M6	16x130	130	1,5	1,5	1,5	3,5
M12 / M16 /	20x85	85	1,2	1,2	1,2	4,0
IG-M8 / IG-M10	20x130	130	1,5	1,5	1,5	4,0

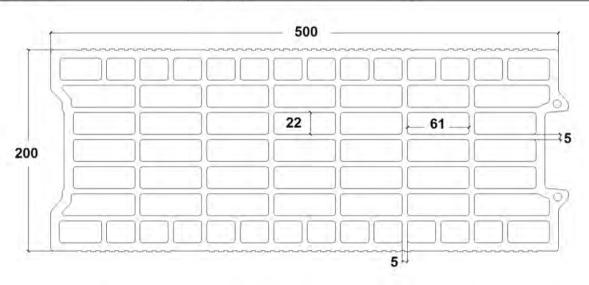
Tabelle C56: Verschiebungen

Ankergröße	Siebhülse	Effektive Verankerungs- tiefe h _{ef}	N	δ _N / N	δ_{No}	$\delta_{N^{\infty}}$	V	$\delta_{ m V0}$	δ_{ee}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0,34		0,27	0,55	0,9		
M8 / M10/	16x85	85	0,34		0,27	0,55	0,9		
IG-M6	16x130	130	0,43	0,80	0,34	0,69	1,0	1,20	1,80
M12 / M16 /	20x85	85	0,34	,	0,27	0,55		,	,
IG-M8 / IG-M10	20x130	130	0,43	<u> </u>	0,34	0,69	1,14		

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Lochziegel Porotherm Homebric	Anhang C 23
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)	
Verschiebungen	

Werte gültig für c_{cr} und c_{min} Bemessung von $V_{Rk,c}$ siehe ETAG 029, Anhang C, außer für Querzugbelastung parallel zum freien Rand mit $c \ge 200 \text{ mm}$: $V_{Rk,c,II} = V_{Rk,b}$

Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.



Steintyp: Lochziegel BGV Thermo

Tabelle C57: Beschreibung des Steins

Steintyp		Lochziegel BGV Thermo	
Dichte	ρ [kg/dm³]	0,6	
Druckfestigkeit	$f_b \ge [N/mm^2]$	4, 6 oder 10	
Code		EN 771-1	
Hersteller (Ländercode)		z.B. Leroux (FR)	
Steinabmessungen	[mm]	500 x 200 x 314	
Bohrverfahren		Drehend	

Tabelle C58: Installationsparameter

Ankergröße		[-]	Alle Größen
Randabstand	C _{cr}	[mm]	100 (120) ¹⁾
Minimaler Randabstand	C _{min} ²⁾	[mm]	100 (120) ¹⁾
Achsabstand	Scrill	[mm]	500
Achsabsiand	S _{cr,⊥}	[mm]	314
Minimaler Achsabstand	Smin	[mm]	100

¹⁾ Werte in Klammern für SH20x85 und SH20x130

Tabelle C59: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung		200	100			1,7
parallel zur Lagerfuge	11	C _C r	500	α _{g,N,II}	7.1	2,0
1: Ankeranordnung		200	100		1-1	1,1
senkrecht zur Lagerfuge		Ccr	314	$\alpha_{g,N,\perp}$		2,0

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	1000 - J. X
Leistungen Lochziegel BGV Thermo	Anhang C 24
Beschreibung des Steins	
Installationsparameter	

²⁾ Für V_{Rk,c}: c_{min} gemäß ETAG 029, Anhang C

Steintyp: Lochziegel BGV Thermo Tabelle C60: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand Anordnung mit s ≥ mit c ≥ II: Ankeranordnung 500 2,0 Ccr $\alpha_{g,V,ll}$ parallel zur Lagerfuge [-] 1: Ankeranordnung Ccr senkrecht zur 314 2.0 $\alpha_{g,V,\perp}$ Lagerfuge

Tabelle C61: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnung	mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	C _{cr}	500	$\alpha_{g,V,II}$	žą.	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	C _{cr}	314	$\alpha_{g,V,\perp}$	[-]	2,0

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Lochziegel BGV Thermo	Anhang C 25
Installationsparameter (Fortsetzung)	

Steintyp: Lochziegel BGV Thermo

Tabelle C62: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

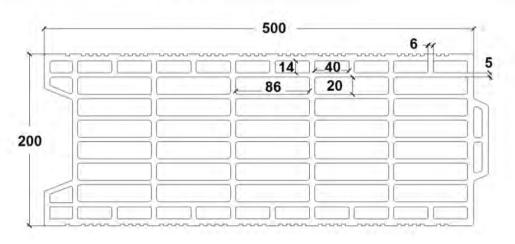
				Charakter	istischer Wider	stand
				Nut	zungskategorie	
Ankergröße Siebhülse		Effektive Verankerungs- tiefe		d/d w/d w/w		d/d w/d w/w
Ţ.			40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{1)}$		$V_{Rk,b}^{(2)3)}$
		[mm]		,.	[kN]	
		Dru	ckfestigkeit f	_b ≥ 4 N/mm²		
M8	12x80	80	0,6	0,6	0,6	2,0
M8 / M10/	16x85	85	0,6	0,6	0,6	2,0
IG-M6	16x130	130	1,2	1,2	0,9	2,5
M12 / M16 / IG-M8 /	20x85	85	0,6	0,6	0,6	2,5
IG-M10	20x130	130	1,2	1,2	0,9	2,5
		Dru	ckfestigkeit f	_b ≥ 6 N/mm²		
M8	12x80	80	0,9	0,9	0,75	2,5
M8 / M10/	16x85	85	0,9	0,9	0,75	2,5
IG-M6	16x130	130	1,5	1,5	1,2	3,0
M12 / M16 / IG-M8 /	20x85	85	0,9	0,9	0,75	3,0
IG-M10	20x130	130	1,5	1,5	1,2	3,0
		Druc	kfestigkeit f _b	, ≥ 10 N/mm²		
M8	12x80	80	0,9	0,9	0,9	3,5
M8 / M10/	16x85	85	0,9	0,9	0,9	3,5
IG-M6	16x130	130	2,0	2,0	1,5	4,0
M12 / M16 / IG-M8 /	20x85	85	0,9	0,9	0,9	4,0
IG-M10	20x130	130	2,0	2,0	1,5	4,0

Tabelle C63: Verschiebungen

Ankergröße	Siebhülse	Effektive Verankerungs- tiefe h _{ef}	N	δ _N / N	δ_{NO}	$\delta_{N^{\boldsymbol{\infty}}}$	V	$\delta_{ m V0}$	$\delta_{V^{w}}$
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0,26		0,21	0,41	0.7		
M8 / M10/	16x85	85	0,26		0,21	0,41	0,7		
IG-M6	16x130	130	0,43	0,80	0,34	0,69		1,00	1,50
M12 / M16 /	20x85	85	0,26		0,21	0,41	0,86	, , , , ,	,
IG-M8 / IG-M10	20x130	130	0,43		0,34	0,69	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Lochziegel BGV Thermo	Anhang C 26
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast	
Verschiebungen	

Werte gültig für c_{cr} und c_{min} Bemessung von $V_{Rk,c}$ siehe ETAG 029, Anhang C, außer für Querzugbelastung parallel zum freien Rand mit $c \ge 250$ mm: $V_{Rk,c,ll} = V_{Rk,b}$ Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.



Steintyp: Lochziegel Calibric R+

Tabelle C64: Beschreibung des Steins

	Lochziegel Calibric R+	
ρ [kg/dm³]	0,6	
$f_b \ge [N/mm^2]$	6, 9 oder 12	1
	EN 771-1	
	z.B. Terreal (FR)	
[mm]	500 x 200 x 314	
	Drehend	
	$f_b \ge [N/mm^2]$	Calibric R+ $ρ$ [kg/dm³] 0,6 $f_b ≥ [N/mm²]$ 6, 9 oder 12 EN 771-1 z.B. Terreal (FR) [mm] 500 x 200 x 314

Tabelle C65: Installationsparameter

Ankergröße		[-]	Alle Größen	
Randabstand	Cor	[mm]	100 (120) ¹⁾	
Minimaler Randabstand	C _{min} ²⁾	[mm]	100 (120) ¹⁾	-
Achaabatand	S _{cr.II}	[mm]	500	
Achsabstand	S _{cr,⊥}	[mm]	314	
Minimaler Achsabstand	Smin	[mm]	100	

Werte in Klammern für SH20x85 und SH20x130

Tabelle C66: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung	mit c ≥	mit s ≥		A	-
II: Ankeranordnung	175	100			1,7
parallel zur Lagerfuge	Cor	500	α _{g,N,II}	7.1	2,0
⊥: Ankeranordnung	175	100		[-]	1,0
senkrecht zur Lagerfuge	C _{cr}	314	α _{g,N,⊥}		2,0

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Lochziegel Calibric R+	Anhang C 27
Beschreibung des Steins	
Installationsparameter	

²⁾ Für V_{Rk,c}: c_{min} gemäß ETAG 029, Anhang C

Steintyp: Lochziegel Calibric R+

Tabelle C67: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge		C _{Cr}	500	$\alpha_{g,V,ll}$		2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{cr} .	314	$\alpha_{g,V,\perp}$	E	2,0

Tabelle C68: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V	C _{cr}	500	$\alpha_{g,V,II}$	4	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{cr}	314	$\alpha_{g,V,\perp}$	Н	2,0

Tabelle C69: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

				Charakteristischer Widerstand				
			Nutzungskategorie					
Ankergröße	207.14.17	Effektive Verankerungs- tiefe		d/d w/d w/w				
	Se Siebhülse tiefe		40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche		
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{(1)}$		V _{Rk,b} ²⁾³⁾		
		[mm]		[kN]				
		Druck	festigkeit f _b ≥ 6	N/mm²				
M8	12x80	80	0,9	0,9	0,75	3,0		
M8 / M10/	16x85	85	0,9	0,9	0,75	4,0		
IG-M6	16x130	130	1,2	1,2	0,9	4,0		
M12 / M16 /	20x85	85	0,9	0,9	0,75	6,0		
IG-M8 / IG-M10	20x130	130	1,2	1,2	0,9	6,0		
		Druck	festigkeit f _b ≥ 9	N/mm ²				
M8	12x80	80	1,2	1,2	0,9	3,5		
M8 / M10/	16x85	85	1,2	1,2	0,9	5,0		
IG-M6	16x130	130	1,5	1,5	1,2	5,0		
M12 / M16 /	20x85	85	1,2	1,2	0,9	7,5		
IG-M8 / IG-M10	20x130	130	1,5	1,5	1,2	7,5		

¹⁾ Werte gültig für c_{cr} und c_{min}

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk		
Leistungen Lochziegel Calibric R+	Anhang C 28	
Installationsparameter (Fortsetzung)		
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast		

Bemessung von V_{Rk,c} siehe ETAG 029, Anhang C, außer für Querzugbelastung parallel zum freien Rand mit c ≥ 250 mm: V_{Rk,c,II} = V_{Rk,b} Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.

Steintyp: Lochziegel Calibric R+

Tabelle C70: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)

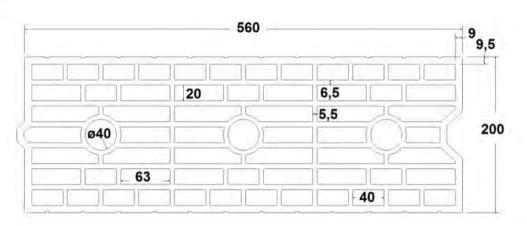
				Charakteristi	scher Widerstand			
			Nutzungskategorie					
		Effektive		d/d		d/d		
		Verankerungs-		w/d		w/d		
Ankergröße	Siebhülse	tiefe		w/w		w/w		
Alikelyloise	Siebiluise					Alle		
			40°C/24°C	80°C/50°C	120°C/72°C	Temperatur-		
						bereiche		
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{1)}$		$V_{Rk,b}^{(2)(3)}$		
		[mm]			[kN]			
		Druckfe	estigkeit f _b ≥ 12	2 N/mm ²				
M8	12x80	80	1,2	1,2	0,9	4,0		
M8 / M10/	16x85	85	1,2	1,2	0,9	5,5		
IG-M6	16x130	130	1,5	1,5	1,2	5,5		
M12 / M16 /	20x85	85	1,2	1,2	0,9	8,5		
IG-M8 / IG-M10	20x130	130	1,5	1,5	1,2	8,5		

Tabelle C71: Verschiebungen

Ankergröße	Siebhülse	Effektive Verankerungs- tiefe h _{ef}	N	δ _N / N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	δ_{ee}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0,34	0,34	0.27	0,55	1,0	1,10	1,65
M8 / M10/	16x85	85			0,27		1.42		
IG-M6	16x130	130 0,	0,43	0.80	0,34	0,69	1,43		
M12 / M16 /	20x85	85	0,34	, - ,	0,27	0,55		2,00	3,00
IG-M8 / IG-M10	20x130	130	0,43		0,34	0,69	2,14		

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Lochziegel Calibric R+	Anhang C 29
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)	
Verschiebungen	

Werte gültig für c_{cr} und c_{min} Bemessung von $V_{Rk,c}$ siehe ETAG 029, Anhang C, außer für Querzugbelastung parallel zum freien Rand mit c ≥ 250 mm: V_{Rk,c,II} = V_{Rk,b} Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.



Steintyp: Lochziegel Urbanbric

Tabelle C72: Beschreibung des Steins

Steintyp		Lochziegel Urbanbric	
Dichte ρ [kg/dm³]		0,7	
Druckfestigkeit	$f_b \ge [N/mm^2]$	6, 9 oder 12	
Code		EN 771-1	
Hersteller (Länderco	de)	z.B. Imerys (FR)	
Steinabmessungen	[mm]	560 x 200 x 274	
Bohrverfahren	7	Drehend	

Tabelle C73: Installationsparameter

Ankergröße		[-]	Alle Größen	
Randabstand	Ccr	[mm]	100 (120) ¹⁾	
Minimaler Randabstand	C _{min} ²⁾	[mm]	100 (120) ¹⁾	
Achsabstand	S _{cr,II}	[mm]	560	
Acrisabstand	S _{cr,⊥}	[mm]	274	
Minimaler Achsabstand	S _{min}	[mm]	100	

Werte in Klammern für SH20x85 und SH20x130

Tabelle C74: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung	••	185	100			1,9
parallel zur Lagerfuge		Ccr	560	α _{g,N,II}		2,0
L: Ankeranordnung senkrecht zur Lagerfuge		185	100	1 6	1-1	1,1
	1	C _C r	274	α _{g,N,⊥}		2,0

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk		
Leistungen Lochziegel Urbanbric	Anhang C 30	
Beschreibung des Steins		
Installationsparameter		

²⁾ Für V_{Rk,c}: c_{min} gemäß ETAG 029, Anhang C

Steintyp: Lochziegel Urbanbric

Tabelle C75: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V ••	C _{cr}	560	$\alpha_{g,\vee,H}$		2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{cr}	274	$\alpha_{g,V,\perp}$	[-]	2,0

Tabelle C76: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnung	1000	mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V	C _{cr}	560	$\alpha_{g,V,II}$	24	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{cr}	274	$\alpha_{g,V,\perp}$	ы	2,0

Tabelle C77: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

				Charakterist	ischer Widerst	and				
Ankergröße Siebhülse				Nutzungskategorie						
	Siebhülse	Effektive Verankerungs- tiefe		d/d w/d w/w						
			40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche				
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$)	V _{Rk,b} ²⁾³⁾				
		[mm]			[kN]					
		Druckfestig	keit f _b ≥ 6 N/n	nm²						
M8	12x80	80	0,9	0,9	0,75	3,0				
M8 / M10/	16x85	85	0,9	0,9	0,75	3,0				
IG-M6	16x130	130	2,0	2,0	1,5	3,0				
M12 / M16 /	20x85	85	0,9	0,9	0,75	3,5				
IG-M8 / IG-M10	20x130	130	2,0	2,0	1,5	3,5				
		Druckfestig	keit f _b ≥ 9 N/n	nm²						
M8	12x80	80	0,9	0,9	0,9	4,0				
M8 / M10/	16x85	85	0,9	0,9	0,9	4,0				
IG-M6	16x130	130	2,5	2,5	2,0	4,0				
M12 / M16 /	20x85	85	0,9	0,9	0,9	4,5				
IG-M8 / IG-M10	20x130	130	2,5	2,5	2,0	4,5				

Werte gültig für c_{cr} und c_{min}

Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	V23 4.1525
Leistungen Lochziegel Urbanbric	Anhang C 31
Installationsparameter (Fortsetzung)	
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast	

Bemessung von V_{Rk,c} siehe ETAG 029, Anhang C, außer für Querzugbelastung parallel zum freien Rand mit c ≥ 190 mm: V_{Rk,c,ll} = V_{Rk,b}

Steintyp: Lochziegel Urbanbric

Tabelle C78: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)

			Charakteristischer Widerstand					
			Nutzungskategorie					
		Effektive		d/d		d/d		
		Verankerungs-		w/d		w/d		
Ankergröße	Siebhülse	tiefe		w/w		w/w		
		40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche			
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$	1)	$V_{Rk,b}^{(2)3)}$		
		[mm]	[kN]					
		Druckfestigk	eit f _b ≥ 12 N/r	nm²				
M8	12x80	80	1,2	1,2	0,9	4,5		
M8 / M10/	16x85	85	1,2	1,2	0,9	4,5		
IG-M6	16x130	130	3,0	3,0	2,5	4,5		
M12 / M16 /	20x85	85	1,2	1,2	0,9	5,0		
IG-M8 / IG-M10	20x130	130	3,0	3,0	2,5	5,0		

Tabelle C79: Verschiebungen

Ankergröße	Siebhülse	Effektive Verankerungs- tiefe h _{ef}	N	δ _N / N	δ_{NO}	δ _{N∞}	V	$\delta_{ m V0}$	δ_{ee}						
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]						
M8	12x80	80	0,34		0.27	0,55									
M8 / M10/	16x85	85		0,34	0,34	0,34	0,34	0,34	0,54	0,54		0,27	0,55	1,30	
IG-M6	16x130	130	0,86	0,80	0,69	1,37		1,00	1,50						
M12 / M16 /	20x85	85	0,34	,	0,27	0,55		,	,						
IG-M8 / IG-M10	20x130	130	0,86		0,69	1,37	1,43								

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Lochziegel Urbanbric	Anhang C 32
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung) Verschiebungen	

Werte gültig für c_{cr} und c_{min} Bemessung von $V_{Rk,c}$ siehe ETAG 029, Anhang C, außer für Querzugbelastung parallel zum freien Rand mit $c \ge 190 \text{ mm: } V_{Rk,c,ll} = V_{Rk,b}$ Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.



Steintyp: Lochziegel Brique creuse C40

Tabelle C80: Beschreibung des Steins

Steintyp	- 1	Lochziegel Brique creuse C40	
Dichte	ρ [kg/dm³]	0,7	
Druckfestigkeit	$f_b \ge [N/mm^2]$	4, 8 oder 12	
Code	- 2	EN 771-1	
Hersteller (Ländercode)		z.B. Terreal (FR)	
Steinabmessungen	[mm]	500 x 200 x 200	
Bohrverfahren		Drehend	

Tabelle C81: Installationsparameter

Ankergröße		[-]	Alle Größen	
Randabstand	Ccr	[mm]	100 (120) ¹⁾	
Minimaler Randabstand	C _{min} ²⁾	[mm]	100 (120) ¹⁾	-
Ashashataad	S _{cr,II}	[mm]	500	
Achsabstand	S _{cr,⊥}	[mm]	200	
Minimaler Achsabstand	Smin	[mm]	200	

¹⁾ Werte in Klammern für SH20x85 und SH20x130

Tabelle C82: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung		mit c ≥	mit s ≥	-1	ph	
II: Ankeranordnung parallel zur Lagerfuge	••	C _{cr}	200	$\alpha_{g,N,ll}$		2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge		C _{cr}	200	$\alpha_{g,N,\perp}$	Ы	2,0

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk		
Leistungen Lochziegel Brique creuse C40	Anhang C 33	
Beschreibung des Steins		
Installationsparameter		

Für V_{Rk,c}: c_{min} gemäß ETAG 029, Anhang C

Steintyp: Lochziegel Brique creuse C40

Tabelle C83: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V •	C _{cr}	500	$\alpha_{g,V,ll}$		2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{cr}	200	$\alpha_{g,V,\perp}$	[-]	2,0

Tabelle C84: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnur	ng	mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V	Cor	500	$\alpha_{g,V,II}$	14	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{CT}	200	$\alpha_{g,V,\perp}$	[-]	2,0

Tabelle C85: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

				and			
			Nutzungskategorie				
Ankergröße	Siebhülse	Effektive Verankerungs- tiefe			d/d w/d w/w		
			w/w 40°C/24°C 80°C/50°C 120°C/72°C		120°C/72°C	Alle Temperatur- bereiche	
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$)	V _{Rk,b} ²⁾³⁾	
		[mm]		7			
		Druckfestigl	keit f _b ≥ 4 N/n	nm²			
M8	12x80	80	0,6	0,6	0,6	0,9	
M8 / M10/	16x85	85	0,6	0,6	0,6	0,9	
IG-M6	16x130	130	0,6	0,6	0,6	0,9	
M12 / M16 /	20x85	85	0,6	0,6	0,6	0,9	
IG-M8 / IG-M10	20x130	130	0,6	0,6	0,6	0,9	
		Druckfestigl	keit f _b ≥ 8 N/n	nm²			
M8	12x80	80	0,9	0,9	0,75	1,2	
M8 / M10/	16x85	85	0,9	0,9	0,75	1,2	
IG-M6	16x130	130	0,9	0,9	0,75	1,2	
M12 / M16 /	20x85	85	0,9	0,9	0,75	1,2	
IG-M8 / IG-M10	20x130	130	0,9	0,9	0,75	1,2	

Werte gültig für c_{cr} und c_{min}
Bemessung von V_{Rk,c} siehe ETAG 029, Anhang C
Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Lochziegel Brique creuse C40	Anhang C 34
Installationsparameter (Fortsetzung)	
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast	

Steintyp: Lochziegel Brique creuse C40

Tabelle C86: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)

				Charakteris	tischer Widersta	ind	
			Nutzungskategorie				
		Effektive		d/d		d/d	
		Verankerungs-		w/d		w/d	
Ankergröße	Siebhülse	tiefe			w/d w/w Alle Temperatur- bereiche V _{Rk,b} ²⁾³⁾		
			40°C/24°C	80°C/50°C	120°C/72°C	bereiche	
		h _{ef}	$N_{Rk,b} = N_{Rk,p}^{1)}$			$V_{Rk,b}^{(2)3)}$	
		[mm]					
		Druckfestigk	eit f _b ≥ 12 N/r	nm²			
M8	12x80	80	1,2	1,2	0,9	1,5	
M8 / M10/	16x85	85	1,2	1,2	0,9	1,5	
IG-M6	16x130	130	1,2	1,2	0,9	1,5	
M12 / M16 /	20x85	85	1,2	1,2	0,9	1,5	
IG-M8 / IG-M10	20x130	130	1,2	1,2	0,9	1,5	

Tabelle C87: Verschiebungen

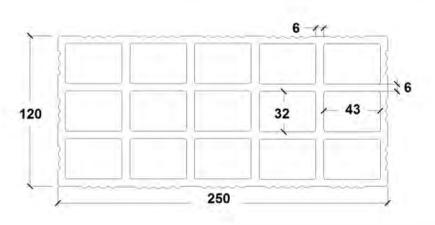
Ankergröße	Siebhülse	Effektive Verankerungs- tiefe h _{ef}	N	δ _N / N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	$\delta_{V^{\infty}}$
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0.17		0.14	0.27			
M8 / M10/	16x85	85	0,17		0,14	0,27			
IG-M6	16x130	130	0,14	0,80	0,11	0,23	0,3	0,9	1,35
M12 / M16 /	20x85	85	0,17	,	0,14	0,27	,	,	,
IG-M8 / IG-M10	20x130	130	0,14		0,11	0,23			
	M8 M8 / M10/ IG-M6 M12 / M16 / IG-M8 /	M8 12x80 M8 / M10/ IG-M6 16x130 M12 / M16 / 20x85 IG-M8 / 20x130	Ankergröße Siebhülse Verankerungstiefe hef liefe hef M8 12x80 80 M8 / M10/ IG-M6 16x85 85 IG-M6 16x130 130 M12 / M16 / IG-M8 / 20x85 85 1G-M8 / 130 130	Ankergröße Siebhülse Verankerungstiefe hef Liefe hef N M8 12x80 80 0,17 M8 / M10/ IG-M6 16x85 85 0,17 M12 / M16 / IG-M8 / 20x85 85 0,17 1G-M8 / 20x130 130 0.14	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Lochziegel Brique creuse C40	Anhang C 35
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)	
Verschiebungen	

8.06.04-357/17 Z46327.17

²⁾

Werte gültig für c_{cr} und c_{min} Bemessung von $V_{Rk,c}$ siehe ETAG 029, Anhang C Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.



Steintyp: Lochziegel Blocchi Leggeri

Tabelle C88: Beschreibung des Steins

Steintyp	Lochziegel Blocchi Leggeri
Dichte ρ [kg/dm	n³] 0,6
Druckfestigkeit f _b ≥ [N/mn	n ²] 4, 6, 8 oder 12
Code	EN 771-1
Hersteller (Ländercode)	z.B. Wienerberger (IT)
Steinabmessungen [m	m] 250 x 120 x 250
Bohrverfahren	Drehend

Tabelle C89: Installationsparameter

Ankergröße		[-]	Alle Größen
Randabstand	Cor	[mm]	100 (120) ¹⁾
Minimaler Randabstand	Cmin	[mm]	60
Achsabstand	S _{cr,II}	[mm]	250
	S _{cr.}	[mm]	120
Minimaler Achsabstand	Smin	[mm]	100

Werte in Klammern für SH20x85; SH20x130 und SH20x200

Tabelle C90: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung	 mit c ≥	mit s ≥			
II: Ankeranordnung	 60	100	1 5.5	-	1,0
parallel zur Lagerfuge	C _{cr}	250	$\alpha_{g,N,II}$	11	2,0
L: Ankeranordnung senkrecht zur Lagerfuge	60	100	$\alpha_{g,N,\perp}$	[-]	2,0

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk		
Leistungen Lochziegel Blocchi Leggeri	Anhang C 36	
Beschreibung des Steins		
Installationsparameter		

Steintyp: Lochziegel Blocchi Leggeri

Tabelle C91: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

Anordnung	mit c ≥	mit s ≥			
II: Ankeranordnung	60 ¹⁾	100 ¹⁾	α _{g,V,II}		1,0
parallel zur Lagerfuge	C _{cr}	250		100	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	60 ¹⁾	100 ¹⁾	4 16.50	[-]	1,6
	C _{Cr}	250	$\alpha_{g,V,\perp}$		2,0

 $^{^{1)}}$ Nur gültig für $V_{Rk,b}$ gemäß Tabelle C93 und C94 Werte in Klammern

Tabelle C92: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnung	mit c ≥	mit s ≥			
II: Ankeranordnung	60 ¹⁾	100 ¹⁾			1,0
parallel zur Lagerfuge	C _{Cl}	250	α _{g,V,II}		2,0
⊥: Ankeranordnung	60 ¹⁾	100 ¹⁾		[-]	1,6
senkrecht zur Lagerfuge	C _{cr}	250	$\alpha_{g,V,\perp}$	$\alpha_{g,V,\perp}$	

¹⁾ Nur gültig für V_{Rk,b} gemäß Tabelle C93 und C94 Werte in Klammern

Tabelle C93: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

			Charakteristischer W Nutzungskateg		scher Widerstar	nd		
		Effektive		Nutzun	gskategorie			
Ankergröße		Verankerungs-	d/d; w/d; w/w					
	Siebhülse	tiefe	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche		
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{-1}$		V _{Rk,b} ⁴⁾		
		[mm]	41.5 4	[kN]				
		Druckfestigke	eit f _b ≥ 4 N/mr	n²				
M8	12x80	80			0,3			
M8 / M10/	16x85	85						
IG-M6	16x130	130	0.4	0.4		2,0 ²⁾ (0,9) ³⁾		
140/140/	20x85	85	0,4	0,4		2,0 (0,9)		
M12 / M16 / IG-M8 / IG-M10	20x130	130						
IG-IVIO / IG-IVI IU	20x200	200	1					
		Druckfestigke	eit f _b ≥ 6 N/mr	n²				
M8	12x80	80						
M8 / M10/	16x85	85						
IG-M6	16x130	130	0.5	0.5		2,5 ²⁾ (1,2) ³⁾		
140 / 140 /	20x85	85	0,5	0,5	0,4	2,5 (1,2)		
M12 / M16 / IG-M8 / IG-M10	20x130	130						
IG-IVIO / IG-IVI IU	20x200	200	4	1				

Werte gültig für c_{cr} und c_{min}

Werte in Klammern $V_{Rk,c} = V_{Rk,b}$ für Einzelanker mit c_{min} Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Lochziegel Blocchi Leggeri	Anhang C 37
Installationsparameter (Fortsetzung)	
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast	

Bemessung von V_{Rk,c} siehe ETAG 029, Anhang C, außer für Querzugbelastung parallel zum freien Rand mit c ≥ 125 mm; V_{Rk,c,II} = V_{Rk,b}

Steintyp: Lochziegel Blocchi Leggeri

Tabelle C94: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)

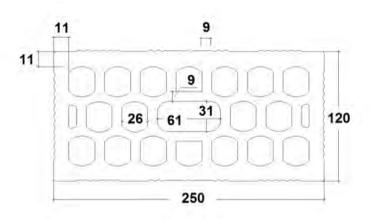
				Charakteristi	scher Widerstar	nd		
			Nutzungskategorie					
		Effektive			d/d			
		Verankerungs-			w/d			
Ankergröße	Siebhülse	tiefe			w/w			
Ankergroise	Olebitalse					Alle		
			40°C/24°C	80°C/50°C	120°C/72°C	Temperatur- bereiche		
		h _{ef}	$N_{Rk,b} = N_{Rk,p}^{(1)} \qquad V_f$					
		[mm]			[kN]			
				_				
		Druckfestigke	eit f _b ≥ 8 N/mn	n²				
M8	12x80	80						
M8 / M10/	16x85	85		0,6				
IG-M6	16x130	130	0,6		0,5	3,0 ²⁾ (1,2) ³⁾		
M40 / M46 /	20x85	85	0,8	0,0		3,0 (1,2)		
M12 / M16 / IG-M8 / IG-M10	20x130	130						
IG-IVIO / IG-IVI IO	20x200	200						
		Druckfestigke	it f _b ≥ 12 N/mı	m ²				
M8	12x80	80						
M8 / M10/	16x85	85						
IG-M6	16x130	130	0,6	0.6	0,6	3,5 ²⁾ (1,5) ³⁾		
M40 / M46 /	20x85	85	0,6	0,6	0,6	3,5 (1,5)		
M12 / M16 / IG-M8 / IG-M10	20x130	130						
1G-1016 / 1G-10110	20x200	200						

Tabelle C95: Verschiebungen

Ankergröße	Siebhülse	Effektive Verankerungs- tiefe	N	δ _N / N	δ_{N0}	$\delta_{N^{\boldsymbol{\omega}}}$	V	$\delta_{ m V0}$	δ _{V∞}
		h _{ef} [mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
Alle Größen	Alle Größen	Alle Größen	0,17	1,20	0,21	0,41	0,9	1,20	1,80

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Lochziegel Blocchi Leggeri	Anhang C 38
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)	
Verschiebungen	

Werte gültig für c_{cr} und c_{min} Bemessung von $V_{Rk,c}$ siehe ETAG 029, Anhang C, außer für Querzugbelastung parallel zum freien Rand mit c \geq 125 mm: $V_{Rk,c,II} = V_{Rk,b}$ Werte in Klammern $V_{Rk,c} = V_{Rk,b}$ mit c_{min} Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.



Steintyp: Lochziegel Doppio Uni

Tabelle C96: Beschreibung des Steins

Steintyp	Lochziegel Doppio Uni
Dichte $\rho \text{ [kg/dm}^3]$	0,9
Druckfestigkeit $f_b \ge [N/mm^2]$	10, 16, 20 oder 28
Code	EN 771-1
Hersteller (Ländercode)	z.B. Wienerberger (IT)
Steinabmessungen [mm]	250 x 120 x 120
Bohrverfahren	Drehend

Tabelle C97: Installationsparameter

Ankergröße		[-]	Alle Größen	
Randabstand	C _{cr}	[mm]	100 (120) ¹⁾	
Minimaler Randabstand	C _{min} ²⁾	[mm]	60	
Achsabstand	S _{cr,II}	[mm]	250	
	S _{cr,⊥}	[mm]	120	
Minimalan Asharbatand	S _{min,II}	[mm]	100	
Minimaler Achsabstand	S _{min,⊥}	[mm]	120	

Werte in Klammern für SH20x85; SH20x130 und SH20x200

Tabelle C98: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge		60	100			1,0
		C _{cr}	250	$\alpha_{g,N,II}$	1.1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge		60	120	$\alpha_{g,N,\perp}$	H	2,0

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Lochziegel Doppio Uni	Anhang C 39
Beschreibung des Steins	
Installationsparameter	

²⁾ Für V_{Rk,c}: c_{min} gemäß ETAG 029, Anhang C

Anoi	rdnung	mit c ≥		mit s ≥				
II: Ankeranordnun parallel zur Lagerfu		C _{cr}		250	$lpha_{g,\vee,ll}$		2,0	
1: Ankeranordnung senkrecht zur Lagerfuge		C _{cr} .		120	$\alpha_{q,V,\perp}$	[-]	2,0	
Tabelle C100:	Gruppenfakto	r für Ankergruppeı	n unter Quera	zugbelastung s	senkrecht zun	n freie	n Ranc	
Anoi	rdnung	mit c ≥		mit s ≥				
II: Ankeranordnung parallel zur Lagerfu		C _{Cr}		250	$\alpha_{g,V,II}$		2,0	
L: Ankeranordnung senkrecht zur Lagerfuge		C _{cr}		120	$lpha_{g,V,\perp}$	[-]	2,0	
Tabelle C101:	Charakteristi	sche Werte der Tra	gfähigkeit u	Charakteristis	Querzuglast cher Widerstai iskategorie	nd		
		Effektive Verankerungs-	d/d w/d w/w					
Ankergröße	Siebhülse	tiefe	40°C/24°C	80°C/50°C	120°C/72°C		Alle nperatu ereiche	
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{-1}$	7. 1	1	/ _{Rk,b} ²⁾³⁾	
		[mm]			[kN]			
		Druckfestigke	it f _b ≥ 10 N/m	m²				
M8	12x80	80						
M8 / M10/	16x85	85						
IG-M6	16x130	130	0,6	0,6	0,5		1,5	
M12 / M16 /	20x85	85						
G-M8 / IG-M10 -	20x130	130						
	20x200	Druckfestigke	it f. > 16 N/m	m²		-		
M8	12x80	80	16 16 E 10 14/11			T		
M8 / M10/	16x85	85	2 2 2 11					
IG-M6	16x130	130	100000	150.55				
V 34 46 6 6 6 -	20x85	85	0,75	0,75	0,6		2,0	
M12 / M16 /	20x130	130						
G-M8 / IG-M10	20×200	200						
1) Werte gült 2) Bemessur	tig für c _{er} und c _{min} ng von V _{Rk,c} siehe E	TAG 029, Anhang C			3 zu multiplizie			

Z46327.17 8.06.04-357/17

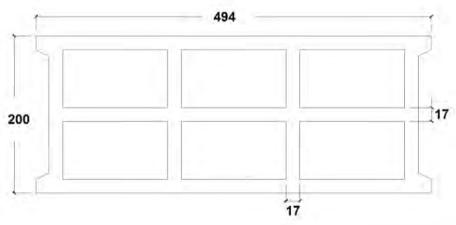
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

Stellityb. Lociiziedei Dobbio O	o: Lochziegel Doppio Un	Steintyp
---------------------------------	-------------------------	----------

Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung) Tabelle C102:

				Charakteristi	scher Widerstar	nd		
			Nutzungskategorie					
		Effektive			d/d			
		Verankerungs-			w/d			
Ankergröße	Siebhülse	tiefe			w/w			
Ankergrosse	Olebridise					Alle		
			40°C/24°C	80°C/50°C	120°C/72°C	Temperatur-		
		h _{ef}			\	bereiche		
			$N_{Rk,b} = N_{Rk,p}^{1}$ $V_{Rk,b}^{2}$					
		[mm]		2	[kN]			
		Druckfestigke	it f _b ≥ 20 N/mı	m²				
M8	12x80	80						
M8 / M10/	16x85	85						
IG-M6	IG-M6 16x130 130	130	0,9	0,9	0,75	2,0		
M40 / M46 /		0,9	0,9	0,73	2,0			
M12 / M16 / IG-M8 / IG-M10 -	20x130	130						
1G-1016 / 1G-10110	20x200	200						
		Druckfestigke	it f _b ≥ 28 N/mı	m²				
M8	12x80	80						
M8 / M10/	16x85	85						
IG-M6	16x130	130	4.0	1.0	0.0	2.5		
N440 / N440 /	20x85	85	1,2	1,2	0,9	2,5		
M12 / M16 / IG-M8 / IG-M10	20x130	130						
IG-IVIO / IG-IVI IU	20x200	200						

Tabelle C103: Verschiebungen


Ankergröße Siebhülse	Effektive Verankerungs- tiefe	N	δ _N / N	δ_{N0}	$\delta_{N^{\boldsymbol{\omega}}}$	V	$\delta_{ m V0}$	δ_{ee}	
		h _{ef} [mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
Alle Größen	Alle Größen	Alle Größen	0,26	1,20	0,31	0,62	0,6	0,3	0,45

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Lochziegel Doppio Uni	Anhang C 41
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)	
Verschiebungen	

Werte gültig für c_{cr} und c_{min}
Bemessung von V_{Rk,c} siehe ETAG 029, Anhang C
Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.

Steintyp: Lochstein aus Leichtbeton Bloc creux B40 Tabelle C104: Beschreibung des Steins Lochstein aus Leichtbeton Steintyp Bloc creux B40 Dichte ρ [kg/dm³] 8,0 $f_b \ge [N/mm^2]$ 4 Druckfestigkeit Code EN 771-3 Hersteller (Ländercode) z.B. Sepa (FR) Steinabmessungen 494 x 200 x 190 [mm] Bohrverfahren Drehend 494

Tabelle C105: Ins	tallationsparameter		
Ankergröße		[-]	Alle Größen
Randabstand	C _{cr}	[mm]	100 (120) ¹⁾
Minimaler Randabstand	C _{min} ²⁾	[mm]	100 (120) ¹⁾
Astroficial	S _{cr,II}	[mm]	494
Achsabstand	S _{cr.⊥}	[mm]	190
Minimaler Achsabstand	Smin	[mm]	100

Werte in Klammern für SH20x85 und SH20x130

Tabelle C106: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung	mit c ≥	mit s ≥	-	-	
II: Ankeranordnung	100	100		-	1,5
parallel zur Lagerfuge	C _{cr}	494	α _{g,N,II}		2,0
1: Ankeranordnung	100	100	1	[-]	1,0
senkrecht zur Lagerfuge	C _{cr}	190	$\alpha_{g,N,\perp}$		2,0

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Lochstein aus Leichtbeton Bloc creux B40	Anhang C 42
Beschreibung des Steins	
Installationsparameter	

Für V_{Rk,c}: c_{min} gemäß ETAG 029, Anhang C

Lagerfuge

190

Steintyp: Lochstein aus Leichtbeton Bloc creux B40 Tabelle C107: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand mit c ≥ Anordnung mit s ≥ 50 100 1.1 II: Ankeranordnung $\alpha_{g,V,II}$ parallel zur Lagerfuge Ccr 494 2,0 [-] ⊥: Ankeranordnung 100 100 1,1 senkrecht zur $\alpha_{g,V,\perp}$

Tabelle C108: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand Anordnung mit c ≥ mit s ≥

Ccr

Anordnun	g	mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V	C _{cr}	494	$\alpha_{g,V,II}$	94	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{Cr}	190	$\alpha_{g,\vee,\perp}$	1-1	2,0

Tabelle C109: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

					Charakt	eristischer	Widerstand	11					
		b		Nutzungskategorie									
Ankergröße	Ciabbillas	Effektive Verankerungs- tiefe		d/d			d/d w/d w/w						
	Siebhülse	Vera Schulde	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche				
		h _{ef}		N _{Rk,b} = N _{Rk,}	1) p		V _{Rk,b} ²⁾³⁾						
		[mm]		[kN]									
			Dru	ckfestigke	it f _b ≥ 4 N/m	nm²							
M8	12x80	80	1,2	0,9	0,75	0,9	0,9	0,75	3,0				
M8 / M10/	16x85	85	1,2	0,9	0,75	1,2	0,9	0,75	3,0				
IG-M6	16x130	130	1,2	0,9	0,75	1,2	0,9	0,75	3,0				
M12 / M16 /	20x85	85	1,2	0,9	0,75	1,2	0,9	0,75	3,0				
IG-M8 / IG-M10	20x130	130	1,2	0,9	0,75	1,2	0,9	0,75	3,0				

Werte gültig für c_{cr} und c_{min}

Bemessung von V_{Rk,c} siehe ETAG 029, Anhang C, außer für Querzugbelastung parallel zum freien Rand mit c ≥ 250 mm: V_{Rk,c,ll} = V_{Rk,b}

Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rkb} mit 0,8 zu multiplizieren.

Tabelle C110: Verschiebungen

Ankergröße	Siebhülse	Effektive Verankerungs- tiefe	Ν	δ _N / N	δ_{N0}	δ _{N∞}	٧	δ_{V0}	δγα
		h _{ef} [mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
Alle Größen	Alle Größen	Alle Größen	0,34	0,90	0,31	0,62	0,86	0,9	1,35

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk

Leistungen Lochstein aus Leichtbeton Bloc creux B40

Installationsparameter (Fortsetzung)

Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast / Verschiebungen

Anhang C 43

2,0

Tabelle C111: B	eschreibung	des Steins					
Steintyp		Vollstein aus Leic	Vollstein aus Leichtbeton LAC				
Dichte	ρ [kg/dm³]	0,6					
Druckfestigkeit	$f_b \ge [N/mm^2]$	2			C		
Code		EN 771-3					
Hersteller (Ländercode)		z.B. Bisotherm (D	E)		X 1488		
Steinabmessungen	[mm]	300 x 123 x 248	-/	-	A Part of	A STATE OF THE PARTY OF THE PAR	
Bohrverfahren	Lened	Drehend			-out the little		
100215103405	. 5 · 0. 5. · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Tabelle C112: In	stallationspa	rameter					
Ankergröße			[-]		Alle Größe	n .	
Randabstand	Ccr		[mm]		1,5*h _{ef}		
Minimaler Randabstand	C _{min}		[mm]		60		
Achsabstand	Scr		[mm]		3*h _{ef}		
Minimaler Achsabstand	Smin		[mm]		120		
Tabelle C113: Gr	uppenfaktor	für Ankergruppen	unter Zugb	pelastung			
Anordnung		mit c ≥		mit s ≥			
II: Ankeranordnung		90		120	41	[-]	1,1
parallel zur Lagerfuge	1	1,5*hef		3*h _{ef}	α _{g,N,II}		2,0
⊥: Ankeranordnung		124		120			1,1
senkrecht zur Lagerfuge		1,5*hef		3*h _{ef}	$\alpha_{g,N,\perp}$		2,0
Tabelle C114: Gr	ruppenfaktor	für Ankergruppen mit c ≥	unter Quer	rzugbelastung mit s ≥	parallel zur	n freien l	Rand
		60		120			0.6
II: Ankeranordnung parallel zur Lagerfuge	V	90		120	α _{g,∨,ii}	— [-J	2,0
⊥: Ankeranordnung		60		120			0,6
senkrecht zur Lagerfuge	V	124		120	$\alpha_{g,V,\perp}$		2,0
Tabelle C115: Gr	uppenfaktor	für Ankergruppen	unter Quer	to a Wagan and Market	senkrecht :	zum freie	n Ran
Anordnung	7-7	mit c ≥		mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V	60 90		120	α _{g,V,II}		2,0
P. 7 - 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		60			1	[-]	
⊥: Ankeranordnung	V.	1,5*hef		120 120		4.3	0,6
senkrecht zur Lagerfuge	V •	1,5*hef		3*h _{ef}	$\alpha_{g,\vee,\perp}$		1,0
Lugeriuge							
Sympafix Injektionssy	votom 0400 D	luo ade- 0400 Pi	n Neudle en				

Steintyp: Vollstein aus Leichtbeton - LAC Tabelle C116: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

					3 3			.			
					Charakte	eristischer V	Viderstand				
			Nutzungskategorie								
	O:-h	Effektive Verankerungs- tiefe		d/d			w/d w/w		d/d w/d w/w		
Anker- größe	Sieb- hülse	Eff Veran t	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche		
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$	1)		$N_{Rk,b} = N_{Rk,b}$	1) p	V _{Rk,b} ²⁾³⁾		
		[mm]				[kN]					
			[Druckfestig	keit f _b ≥ 2 N	/mm²					
M8	-	80	3,0	2,5	2,0	2,5	2,0	1,5	3,0		
M8 / M10/ IG-M6	-	90	3,0	3,0	2,0	2,5	2,5	2,0	3,0		
M10 / IG-M8	-	100	3,5	3,0	2,5	3,0	2,5	2,0	3,0		
M16 / IG-M10	-	100	3,0	3,0	2,0	3,0	3,0	2,0	3,0		
M8	12x80	80	2,5	2,5	2,0	2,5	2,0	1,5	3,0		
M8 / M10/	16x85	85	3,0	2,5	2,0	3,0	2,5	2,0	3,0		
IG-M6	16x130	130	3,0	2,5	2,0	3,0	2,5	2,0	3,0		
M12 / M16	20x85	85	2,5	2,5	2,0	2,5	2,5	2,0	3,0		
/ IG-M8 /	20x130	130	2,5	2,5	2,0	2,5	2,5	2,0	3,0		
IG-M10	20x200	200	2,5	2,5	2,0	2,5	2,5	2,0	3,0		

Tabelle C117: Verschiebungen

Ankergröße	Sieb- hülse	Effektive Verankerungs- tiefe	N	δ _N / N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	δ _{∨∞}
		h _{ef} [mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	-	80							
M8 / M10/ IG-M6	-	90	0,86	0,50	0,43	0,86			
M10 / IG-M8	-	100	1,00	0,35	0,35	0,70			
M16 / IG-M10	-	100	0,86	0,35	0,30	0,60			
M8	12x80	80		0,50	0,36	0,71	0,9	0,25	0,38
M8 / M10/	16x85	85					,-	0,20	,,,,,
IG-M6	16x130	130	0.74						
	20x85	85	0,71	0,35	0,25	0,50			
M12 / M16 / IG-M8 / IG-M10	20x130	130]						
IG-M8 / IG-M10	20x200	200							

Sympafix Injektionssystem C100-Plus oder C100-Plus Nordic für Mauerwerk	
Leistungen Vollstein aus Leichtbeton - LAC	Anhang C 45
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast	
Verschiebungen	

Werte gültig für c_{cr}, Werte in Klammern gültig für Einzelanker mit c_{min} Für die Bemessung von V_{Rk,c} siehe ETAG029, Anhang C Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.